基于物联网的日光温室低温灾害监测预警技术及应用

    Forewarning technology and application for monitoring low temperature disaster in solar greenhouses based on internet of things

    • 摘要: 为减少冬春季由于大风强降温、连阴天造成的低温灾害对日光温室生产造成的影响,该文介绍利用物联网技术,集成开发一套包括日光温室小气候与生态环境监测网络、数据实时采集与无线传输、低温灾害监测与预警发布、远程加温控制于一体的技术方法。该方法通过构建具有统一入口的分布式信息管理系统,实现对不同传感器生产厂家设备的兼容及多个监测站的组网;以嵌入式GIS组件库作为开发平台,使数据接收软件有较强的空间显示与分析功能。基于对典型日光温室小气候观测数据与作物生长临界指标,利用逐步回归及神经网络建模,获得土围护和砖维护结构日光温室低温预警指标。利用手机短信、电子显示屏、网站等多媒体发布低温预警服务,并采用远程智能控制方式实现对温室定时加温。该项技术有效地解决了天津地区日光温室低温灾害监测和预警需要,提高设施农业园区管理水平和应对灾害能力。

       

      Abstract: The Internet of Things has been wildly used in solar greenhouse. Most applications focus on facilities modern greenhouse environment monitoring and regulation, product traceability, and pest remote diagnostics. In fact, facility agriculture uses different methods to change microclimate in greenhouse to help crop grow anti - seasonally. This study focused on the Internet of Things (IOT) application in reducing the influence of low temperature disaster on solar greenhouse production in North China caused by strong cooling and successive overcast weather in winter and spring. We installed several sensors in greenhouse including air temperature, relative humidity, soil temperature, radiation (or light intensity), crop camera platform with synchronization photography, which composed the sensing layer of IOT. The equipments transferred data every 10 minutes to the server in our office. An application was developed to transfer data through socks programming, query and analyze data, and retrieve greenhouse cryogenic information. Data from different manufacturers are changed into a unified format, then SQL server 2000 sp4 is used to store data. A microclimate monitor data receiver software, based on GIS, was also developed to help people display and analyze data. A cryogenic disaster indicator for cucumber and real-time microclimate data analysis and processing system were established, which can provide low-temperature disaster warning. For example, if the cucumbers are planted in solar greenhouses during the flowering and fruiting period, and the lowest temperature outside is lower than -10℃ and highest temperature outside is lower than -3℃, the cucumbers will stop growing or become damaged. Because most greenhouses share a few structures, when we make a low temperature disaster warning towards one kind's structure, it can be sent to the greenhouse manager group who owned same type greenhouse structure. The results were available via SMS (Short Message Service), LED/ LCD electronic display, website, and voice calls. We developed professional weather service website for real-time data and image display, microclimate data analysis and disaster warning in the greenhouse. We used flash/html5 to display data dynamically. When the greenhouse temperature goes down to threshold, people receive a warning by SMS. At the same time, the application platform triggers intelligent switch through SMS to start the heating equipment, and then prevents the crop from low-temperature disaster. We used an electric heater as heating equipment in this test. The temperature in heater outlet was stabilized at 7℃ and wind speed stabilized at 3m/s. The results show that temperature in the test greenhouse is 4.2℃ higher than in the reference greenhouse without heating. The average lowest temperature in test greenhouse is 4.5℃ higher than reference greenhouse. The average temperature is 4.3℃ higher than the reference in cold weather and 4.5℃ higher in successive overcast weather. Because temperature distribution in space is uniform, it will not affect the uniformity of the crop population growth. This study effectively solved the low-temperature disaster monitoring and early warning problem in Tianjin. Using Internet of Things and cloud computing technology, it helped users to acquire relevant information through simple receiving terminal that could be used for disaster prevention. Effective monitoring and intelligent remote management in the groups of solar greenhouses will change the traditional management mode and improve management efficiency and capacity of calamity reduction.

       

    /

    返回文章
    返回