体积置换法直接测量土壤质量含水率及土壤容重

    Volume replacement method for direct measurement of soil moisture and bulk density

    • 摘要: 土壤含水率直接测量是相关研究和应用的基础,在土壤力学、作物栽培、农田灌溉、生态环境等研究和实践中十分重要。该文提出了一种与传统烘干称质量法相当的体积置换法直接测量土壤质量含水率及土壤容重。该方法在假设一定土壤颗粒密度的前提下,用一定体积的标准取样环刀取得土样后,通过向待测量土体补充水分使土壤达到饱和,用一定体积的水置换土壤中的充气空隙,直到土样达到饱和状态;再通过测量得到的初始/原始土样质量、饱和后土壤的质量以及已知土壤颗粒密度和水密度,计算得到被置换的充气空隙的体积,进而由此计算得到土壤质量含水率和土壤容重。采用3种不同土壤,即陕西杨凌黏黄土、北京粉壤土和江西黏红土,分别预配制成7种不同初始土壤体积含水率,含水率约为:风干土(含水率2%~3%)、5%、10%、15%、25%、30%和饱和含水率,以及3种不同土壤容重:1.25、1.35和1.45 g/cm3进行室内试验。用类似的土样,采用传统方法烘干土样8、12、24、48 h后,测量确定土壤的质量含水率,通过延长烘干时间测得数据表明,传统方法烘干8 h所测得的质量含水率仍有1%~3.2%的含水率误差。最终试验结果表明体积置换方法测得的土壤含水率比传统烘干土样8 h 所测得的结果大2%~3%,比烘干土样48 h所测得的结果大1%左右。体积置换方法测量操作过程简单,耗时较少,节约能源,测量结果具有较高精度。

       

      Abstract: Direct measurement of soil moisture and bulk density is the foundation of related research and applications, which is of great importance in such studies and applications as soil mechanics, crop production, irrigation and ecological environments. This paper presents a new method for direct measurement of soil moisture and soil bulk density based on volume replacement, which is equivalent to the conventional oven-dry method. The measurement principle is based on the model of soil three-phase composition, soil particles, water and air. Its volume and mass are partitioned into three fractions of these substances. The initial soil mass is approximately determined by the soil particles and water when the air mass is neglected. The measurement principles are as the follows. The samples used for measurements of moisture content and bulk density were taken by corers of known volumes and were weighted to determine their initial masses before they were filled with water to saturation state to replace all the air-filled spaces in the soil samples. The initial/original weight of the soil sample and that after saturation were used to compute the water mass required to replace the air-filled volume. Under the known soil particle density, the given volume as defined by the corer and the determined air-filled space volume, the original soil water content and soil bulk density can be calculated. An experimental system and the related algorithm procedures were proposed for the direct measurement of water content and soil bulk density. The standard soil corers were used to prepare the soil samples under designed bulk densities. The saturators were used to pre-saturate the soil samples. The samples were dripped with water to ensure their saturation during the measurement. Three soil materials, a clay loam from Yangling of Shaanxi province, a silt loam from Beijing and a red clay from Jiangxi province, were used for the demonstrational experiments to illustrate the measurement procedures and to verify the method. Seven different initial soil water contents, about 2%-3%, 5%, 10%, 15%, 25%, 30% and saturated water content, and three bulk densities of about 1.25, 1.35 and 1.45 g/cm3 were adopted in the experiments. These samples of the different initial water contents and soil bulk densities were used to measure the soil moisture by the volume replacement method. Detailed experimental procedures were presented to illustrate the experimental procedures. Conventional oven-dry method was used to determine parallelly the moisture contents of the soil samples similarly prepared. The water content changes when samples were oven-dried for 8, 12, 24, 48 h were measured to determine the influences of oven-dry period. The measured data showed that the soil water contents measured by the volume replacement were 2%-3% higher than those by the oven-dry method for a drying period of 8 h and were about 1% higher than those by the conventional oven-dry method for a drying period of 48 h. In addition, the traditional drying method is more time-consuming and not suitable for the field work. This indicates oven-dry method needs extended period of time to dry the soil sample. The results verify the newly-suggested measurement method and the experimental procedures. In general, the experimental operation of the volume replacement method is simple, time efficient, low energy consumption and high accuracy.

       

    /

    返回文章
    返回