生物质颗粒燃料储藏理化特性变化规律

    Variation of physical and chemical characteristics of biomass pellet fuels during storage

    • 摘要: 为分析生物质颗粒燃料在北方气候下是否可以长期储藏,以及不同储藏方式对颗粒燃料理化特性的影响规律,2011年3月至8月期间,针对北京地区气候,对玉米秸秆和木质2种颗粒燃料,以袋装、半封闭、露天3种储藏方式开展储藏试验。试验结果表明,2种颗粒在3种储存方式下机械耐久性都保持在94.46%以上,生物质颗粒燃料未出现发霉现象,全水分和堆积密度变化规律受气候变化规律相吻合。其中玉米颗粒和木质颗粒的露天状态储存时全水分极差(2.42%和2.55%)和颗粒密度极差最大(0.12 t/m3和1.297 t/m3)。灰分和挥发份保持则稳定状态初始状态。这为生物质颗粒燃料的安全储存提供理论依据。

       

      Abstract: With the social and economic development, demand of energy is increasing. Biomass pellet fuels have a wide range of renewable raw materials. Biomass pellet fuels with small storage space, easily transport and use of clean and green, high thermal efficiency, and sustainable use, have broad prospects for the development in the future. Long-term storage of biomass fuels is necessary because that there is a time gap between feedstock harvesting and production for at least 6 months of storage in the factory. In order to study whether they can be adapted to store under northern climate, the physical and chemical characteristics of the different storage methods (bagging, semi-closed, open-air), we carried out an experiment to study the laws of the three storage modes with corn pellets and wood pellets on March to August in 2011. The results showed that the all biomass pellet fuels did not appear mildew, while the changing laws of total water and bulk density were accordance with the climate changes. The range of the corn pellet fuels and wood pellet fuels in the open-air storage mode were the largest with (2.42% and 2.55% respectively) of all the storage form, as the particle density does (0.12 and 1.297 t/m3 respectively). The ash and volatile matter of the three storage form kept stable. However, we found some strange phenomenon as follows: 1) generally, all the net calorific values become bigger as time (the total water values); 2) The range of the total water was the biggest (2.42%) when the corn pellets was stored in the open-air mode, while the range of the particle density was the smallest. So the phenomenon needs further study. The conclusions provide a theoretical basis for the safe storage of biomass pellet fules.

       

    /

    返回文章
    返回