王建楠, 刘敏基, 胡志超, 谢焕雄, 彭宝良, 颜建春, 陈有庆. 花生种子带式清选设备关键作业参数优化[J]. 农业工程学报, 2018, 34(23): 33-41. DOI: 10.11975/j.issn.1002-6819.2018.23.004
    引用本文: 王建楠, 刘敏基, 胡志超, 谢焕雄, 彭宝良, 颜建春, 陈有庆. 花生种子带式清选设备关键作业参数优化[J]. 农业工程学报, 2018, 34(23): 33-41. DOI: 10.11975/j.issn.1002-6819.2018.23.004
    Wang Jiannan, Liu Minji, Hu Zhichao, Xie Huanxiong, Peng Baoliang, Yan Jianchun, Chen Youqing. Optimization of key working parameters of belt separator for peanut seeds[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2018, 34(23): 33-41. DOI: 10.11975/j.issn.1002-6819.2018.23.004
    Citation: Wang Jiannan, Liu Minji, Hu Zhichao, Xie Huanxiong, Peng Baoliang, Yan Jianchun, Chen Youqing. Optimization of key working parameters of belt separator for peanut seeds[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2018, 34(23): 33-41. DOI: 10.11975/j.issn.1002-6819.2018.23.004

    花生种子带式清选设备关键作业参数优化

    Optimization of key working parameters of belt separator for peanut seeds

    • 摘要: 针对带式清选设备清选花生种子合格率低、带出率高,关键作业参数研究空白的现状,该文结合花生种子物理特性,研究了整粒花生在带式清选设备帆布带的滚动摩擦角及半粒花生在帆布带的静摩擦角,并运用中心组合试验设计理论开展关键作业参数优化,重点分析了带式清选设备的纵向倾角、横向倾角、帆布带转速对清选合格率、带出率的影响规律,并以合格率、带出率为响应指标进行优化。首先对主产区山东的典型品种花育33物理特性进行研究,并探明了以带式清选设备帆布带为摩擦面的整粒花生滚动摩擦角、半粒花生静摩擦角,然后采用二次正交旋转组合试验方法设计试验并用Design-Expert进行数据处理,建立合格率、带出率的回归数学模型并进行方差分析,分析得出影响花生种子带式清选合格率与带出率的主次因素均依次为:帆布带带速>纵向倾角>横向倾角。通过响应曲面方法分析各因素交互作用对合格率、带出率的影响,并根据优化目标的重要程度(合格率较带出率更重要)对回归模型进行多目标优化,得出花生种子带式清选设备关键作业参数的最优组合为:纵向倾角23.22(,横向倾角25.21(,帆布带带速0.70 m/s,在该条件下合格率、带出率分别为97.20%、2.73%。将优化参数在花生种子清选加工生产线上进行验证及批量化流水加工作业,流水加工作业合格率达95.8%、带出率3.9%,作业质量大幅提升,达到行业标准优等品设备作业性能。该研究可为提升花生种子带式清选设备作业质量提供参考。

       

      Abstract: Abstract: The qualified rate and the entrainment rate was caused by the unreasonable working parameters of the key working parameters of the belt separator for peanut seeds, in order to make them to be a reasonable level, the central composite experiments were conducted to optimize the working parameters. Firstly, the physical properties of peanut seeds were studied, and the study object was "Huayu 33" planted widely in Shandong province. The shape of "Huayu 33" peanut seeds was oval, the thousand seeds weight of which was 812.10 g, the length, width and thickness were mainly at 16.23-19.17, 8.07-10.37, 7.17-8.36 mm, respectively. The moisture content of peanut seeds was 9.3%. The rolling friction angle of high quality peanut seeds was 14.3°, and the angle of static friction angle of crushed half seeds was 35.7°, which were tested by inclined surface device. The effects of key working parameters of peanut seed belt separator, including longitudinal angle, heeling angle, velocity of canvas belt on qualified rate and entrainment rate, were analyzed. And then the composite experiment methods of quadratic orthogonal rotation were adopted, the data were analyzed based on the design-expert software, the mathematical regression models of qualified rate and entrainment rate were built, and their corresponding variance analysis were conducted too. A regression equation of the relationship between variation coefficient of the 3 key working parameters was obtained. Analysis of variance showed that the velocity of canvas belt was the biggest factor that affects the qualified rate and entrainment rate, and the smallest impact factor was the distance between rotary and stationary plate; regarding to the breakage rate, the biggest factor was working face width of stationary plate, and the smallest factor was heeling angle. The response surface method was utilized to analyze the effects of factors' interaction on qualified rate and entrainment rate, and the multi-objective optimizations were conducted for the regression models to obtain the working parameters of high qualified rate and low entrainment rate. The optimal combination working parameters of peanut seed belt separator were as follows: velocity of canvas belt was 0.7 m/s, longitudinal angle was 23.22(, and heeling angle was 25.21(. All of those were obtained by the optimization solution of all factors with the quadratic regression model equation of performance evaluation indices in the range of experimental parameters constraints. Under the condition of the optimal combination working parameters, the qualified rate and the entrainment rate were 97.20% and 2.73%, respectively, which met the premium grade of belt separator according national standard and the need of peanut seeds processing industry. The results of verification test were highly consistent with the results of optimization solution. The production verification test was conducted on the peanut seed production line in the factory, the working parameters of belt separator were adjusted according to the optimization results in the test. Through optimizing the parameters of the belt separator, the qualified rate was greatly improved, and the qualified rate and entrainment rate were 95.8% and 3.9% respectively, which were very close to the previous simulation results. The results of optimization are helpful for the improvement of belt separator for peanut seeds.

       

    /

    返回文章
    返回