于畅畅, 徐丽明, 王庆杰, 袁全春, 马帅, 牛丛, 袁训腾, 曾鉴, 王烁烁, 陈晨. 篱架式栽培葡萄双边作业株间自动避障除草机设计与试验[J]. 农业工程学报, 2019, 35(5): 1-9. DOI: 10.11975/j.issn.1002-6819.2019.05.001
    引用本文: 于畅畅, 徐丽明, 王庆杰, 袁全春, 马帅, 牛丛, 袁训腾, 曾鉴, 王烁烁, 陈晨. 篱架式栽培葡萄双边作业株间自动避障除草机设计与试验[J]. 农业工程学报, 2019, 35(5): 1-9. DOI: 10.11975/j.issn.1002-6819.2019.05.001
    Yu Changchang, Xu Liming,, Wang Qingjie, Yuan Quanchun, Ma Shuai, Niu Cong, Yuan Xunteng, Zeng Jian, Wang Shuoshuo, Chen Chen. Design and experiment of bilateral operation intra-row auto obstacle avoidance weeder for trellis cultivated grape[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2019, 35(5): 1-9. DOI: 10.11975/j.issn.1002-6819.2019.05.001
    Citation: Yu Changchang, Xu Liming,, Wang Qingjie, Yuan Quanchun, Ma Shuai, Niu Cong, Yuan Xunteng, Zeng Jian, Wang Shuoshuo, Chen Chen. Design and experiment of bilateral operation intra-row auto obstacle avoidance weeder for trellis cultivated grape[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2019, 35(5): 1-9. DOI: 10.11975/j.issn.1002-6819.2019.05.001

    篱架式栽培葡萄双边作业株间自动避障除草机设计与试验

    Design and experiment of bilateral operation intra-row auto obstacle avoidance weeder for trellis cultivated grape

    • 摘要: 针对现有篱架式栽培葡萄园中株间除草机作业效率不高、葡萄藤周围未除草区域较大等问题,该文设计了一种双边作业的株间自动避障除草机。通过对除草单体各部件进行理论分析,确定了行宽调节机构、信号采集机构、自动避障机构和除草刀盘等关键部件的结构及参数,其中避障液压缸行程为150 mm,除草刀盘半径为150 mm。在ADAMS中建立了除草机虚拟样机模型,进行单因素仿真试验,确定了避障液压缸速度、前进速度和控制系统预设的当触杆转动达到一定角度触发自动避障机构工作的阈值(简称“角度阈值”)为主要影响因素。以仿真得到的3个主要影响因素为试验因素,以除草作业覆盖率为评价指标,设计了二次回归组合试验,建立了除草作业覆盖率的回归模型,得到最优参数分别为:避障液压缸速度160 mm/s,前进速度380 mm/s,角度阈值15.12(。在最优参数下进行了田间验证试验,得到平均除草作业覆盖率约为90.02%。采取双边同时作业方式,作业效率比单边作业方式提高约1倍。该研究为可用于篱架式栽培葡萄及其他作物株间除草机的进一步优化提供参考。

       

      Abstract: Abstract: Considering the problems of low efficiency and large area without weeding around the vine after operation, a bilateral operation intra-row auto obstacle avoidance weeder for trellis cultivated grape was designed. The weeder consisted of frame, hydraulic system, transmission system, land wheel and weeding device. Frame was installation carrier for all of machine components. Hydraulic system was used to provide power for weeder, driving two hydraulic motors and four hydraulic cylinders. Transmission system was the medium which transmitted power from tractor to hydraulic system. Land wheel made it possible to adjust the weeding depth. Weeding device was the key component for the weeder, and it was composed of row width adjustment mechanism, signal acquisition mechanism, auto obstacle avoidance mechanism and weeding cutter head. The extending distance of row width adjustment mechanism could be adjusted from 0 to 400 mm to adapt different row spacings in different fileds. The specific location of the grape vine could be identified correctly with signal acquisition mechanism. And the obstacle avoidance mechanism could avoid weeding cutter head from contacting the grape vine, which probably caused injuries. The weed was destroyed under high-speed rotation of weeding cutter head driven by hydraulic motor. The parameters of these key components of weeding monomer were determined by theoretical analysis and experiment. In order to research the effects of structural and operation parameters of automatic obstacle avoidance weeder, a brief virtual prototype model was built in ADAMS software, and key components were parameterized simultaneously. To simplify calculation, using link mechanism to replace the complex machine and constraints were set between different links. Kinematics simulations was carried out using virtual prototype model, and the simulation results of operating trajectory of weeding cutter head agreed with theoretical analysis. Then single factor simulation experiments were carried out in ADAMS with the coverage rate of weeding selected as the evaluation index. The simulation results confirmed that speed of obstacle avoidance hydraulic cylinder, operating speed of the weeder and angle threshold (defined as the rotation angle of feeler lever when control system triggered the automatic obstacle avoidance mechanism) were the main influence factors. Operating speed and angle threshold had positive impact on it, while speed of obstacle avoidance hydraulic cylinder had negative impact on it. In addition, quadratic regression general combination experiments were conducted by taking speed of obstacle avoidance hydraulic cylinder, operating speed and angle threshold as the experiment factors and coverage rate of weeding as the evaluation index. Analysis of variance (ANOVA) was performed to find the statistically significant parameters in field experiments and quadratic regression model was set up by response surface methodology with Design-Expert 8.0.6. It was showed that speed of obstacle avoidance hydraulic cylinder, operating speed and angle threshold were extremely significantly (P<0.01) effective parameters, and the interaction of speed of obstacle avoidance hydraulic cylinder speed, operating speed and angle threshold were significantly (P<0.05) effective on coverage rate of weeding. Furthermore, the optimizing function of Design-Expert 8.0.6 was used for the optimization in this paper and the results showed that when speed of obstacle avoidance hydraulic cylinder was 160 mm/s, operating speed was 380 mm/s and angle threshold was 15.12°, the optimal average coverage rate of weeding was 90.15%. Field experiment with the optimal combination of key parameters were carried out to testify the validity of optimization. The coverage rate of weeding was 90.02%, which is 0.67 percentage points higher than the results of quadratic regression general combination tests. This study could provide a reference for further research of intra-row weeder for trellis cultivated grape and other plants.

       

    /

    返回文章
    返回