极端暴雨情景模拟下黄河中游区现状下垫面来沙量分析

    Sediment yield of current underlying surface under simulated extreme rainstorm in middle reaches of Yellow River Basin

    • 摘要: 黄河防洪,难在沙多。未来黄河的来沙情势事关治黄方略确定、流域水沙资源配置、重大水利工程布局与运用,是近年治黄的热点问题。2000年以来,黄土高原生态环境大幅改善,黄河来沙锐减,在此背景下,需要客观认识极端暴雨情景下的黄河最大可能来沙量,为黄河防洪减淤提供决策依据。该文以沙量贡献率约91%的黄河中游河口镇至潼关区间为研究对象,以下垫面产输沙环境大体稳定、且暴雨偏多的2010-2018年作为现状下垫面,设计了"假定1933年暴雨重现"和"假定2010-2018年各支流的最大暴雨年在同一年发生"等两种极端暴雨情景,分别采用各支流最大暴雨年实测沙量相加和基于现状年各支流降雨-产沙关系的水文学方法,分析了研究区现状下垫面在极端暴雨情景下的可能来沙量。1933年是黄土高原近百年实际发生过的最大暴雨年;通过暴雨移植而成的"合成年"暴雨量级仅次于1933年,但输沙量和产沙量相当于实测值;两个暴雨情景的大暴雨落区不同。研究结果表明:在现状下垫面背景下,如果2010-2018年各支流的最大暴雨年出现在同一年,研究区的年输沙量将达6.2亿t,相应的区域产沙量为9.9亿t;基于现状下垫面的降雨-产沙关系,如果1933年大暴雨在研究区重现,研究区的年输沙量将达9.4亿t,相应的区域产沙量为12.4亿t。该文采用的两种极端暴雨情景,只能算得上是近一百年内的最大降雨,且未考虑坝库水毁排沙和极端暴雨出现在连续干旱年之后等不利情况,否则来沙量将更大。由此可见,即便是黄土高原林草植被已经大幅改善,且大量梯田和淤地坝建成投运,黄河防洪和骨干工程调度运用仍要做好应对大沙的准备。

       

      Abstract: The flood control of the Yellow River Basin has been very difficult due to the heavy sedimentation of riverbed. So it is the very important to predict and evaluate the future situation of the sediment yield of the Yellow River Basin for deciding strategy of Yellow River governance and development, water resources allocation, plan and operation of the major water conservancy projects. Since 2000, the ecological environment of the Loess Plateau has been greatly improved and the sediment discharge of the Yellow River has decreased significantly. In this background, it is necessary to identify objectively the maximum possible sediment discharge of the Yellow River under the extreme rainstorm, so as to provide decision-making references for flood control and sedimentation reduction of the Yellow River. In this paper, the region between Hekouzhen and Tongguan in the middle reaches of the Yellow River basin was selected as the study area which contributes about 91% of the sediment discharge of the Yellow River Basin, and the underlying surface during 2010 to 2018 was selected as the current underlying surface because the corresponding environment situation of the Loess Plateau in the terms of sediment produce and transportation tend to be stable after experiencing rapid improvement of vegetation for years,and also because there were more rainstorms. Two extreme rainstorm scenarios were designed, one assumes that the rainstorms in 1933 have recurred, and other assumes that the maximum rainstorm in each tributary from 2010 to 2018 have occurred in the same year. Respectively using the method of summing up the annual measured sediment of the maximal rainstorm year of 2010-2018 in each tributary and using the hydrological method based on the current relationship between rainfall and sediment yield, the possible amount of sediment yield of the current underlying surface under extreme rainstorm in the study area was analyzed. In 1933, the Loess Plateau experienced the heaviest rainfall in the past 100 years. The magnitude of synthetic rainstorm was second only to the one in 1933. The difference of the two extreme rainstorm scenarios was the rainstorm area. The results revealed that if the maximum rainstorm of each tributary from 2010 to 2018 occurred in the same year under the current underlying surface condition, the sediment discharge poured into Yellow River in the study area would reach 620 million tons, and the corresponding regional sediment yield would be 990 million tons. If the rainfall scenario in 1933 reappeared, the annual sediment discharge would reach 940 million tons, based on the relationship between rainfall and sediment discharge under the current surface condition in study area, and the corresponding sediment yield would be 1.24 billion tons. The two extreme rainstorm scenarios used in this paper can only be regarded as the maximum rainfall in the past 100 years (not in hundreds of years), and also the calculation process took no account of the unfavorable conditions such as sediment releasing in case of check dams damage, or the situation which the extreme rainstorm occurs after successive years of drought. Otherwise, the sediment discharge would be even larger. Therefore, even if the forest and grass vegetation in the Loess Plateau has been greatly improved, and a large number of terraces and check dams have been built and put into operation, the Yellow River flood control and regulation of key reservoirs still needs to be prepared for large amount of sediment.

       

    /

    返回文章
    返回