贾光普, 左合君, 王海兵, 闫敏, 姚云峰, 韩雪莹, 刘峰. 高立式尼龙网沙障周围风沙运动特性的数值模拟与试验[J]. 农业工程学报, 2020, 36(18): 109-117. DOI: 10.11975/j.issn.1002-6819.2020.18.014
    引用本文: 贾光普, 左合君, 王海兵, 闫敏, 姚云峰, 韩雪莹, 刘峰. 高立式尼龙网沙障周围风沙运动特性的数值模拟与试验[J]. 农业工程学报, 2020, 36(18): 109-117. DOI: 10.11975/j.issn.1002-6819.2020.18.014
    Jia Guangpu, Zuo Hejun, Wang Haibing, Yan Min, Yao Yunfeng, Han Xueying, Liu Feng. Numerical simulation and experiment of wind-sand movement characteristics around high vertical nylon mesh sand barriers[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2020, 36(18): 109-117. DOI: 10.11975/j.issn.1002-6819.2020.18.014
    Citation: Jia Guangpu, Zuo Hejun, Wang Haibing, Yan Min, Yao Yunfeng, Han Xueying, Liu Feng. Numerical simulation and experiment of wind-sand movement characteristics around high vertical nylon mesh sand barriers[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2020, 36(18): 109-117. DOI: 10.11975/j.issn.1002-6819.2020.18.014

    高立式尼龙网沙障周围风沙运动特性的数值模拟与试验

    Numerical simulation and experiment of wind-sand movement characteristics around high vertical nylon mesh sand barriers

    • 摘要: 为探究沙障影响下的风沙运动规律,明晰不同情况高立式尼龙网沙障周围的风速变化和积沙分布,补充野外试验数据不足的问题。该研究以磴口-乌斯太的穿沙公路为研究背景,基于FLUENT数值模拟的方法,对不同障排数量、沙障高度及入口风速下高立式尼龙网沙障周围的风速和积沙分布进行数值模拟,并通过野外试验进行验证。结果表明:不同情况高立式沙障沿水平方向的流场形式均以"V"和"W"型存在,而高立式沙障背风侧垂直方向的风速廓线形式主要以"S"型为主;风速为8 m/s,相邻障排间距为3 m条件下,分析不同障排数量对风沙运动的影响发现,单排、双排和三排高立式沙障的防护范围分别为第一排沙障至其后的6、13和20 m处,随沙障排数的增加总积沙量呈现递增趋势;风速为10 m/s,双排沙障间距8 m条件下分析沙障高度对风沙运动的影响发现,60、100、120和150 cm高立式沙障的水平流场分层点分别为0.8、1.2、1.5和2.0 m;沙障高度150 cm,双排沙障间距20 m条件下分析入口风速对风沙运动的影响发现,当风速增至15 m/s以上时,150 cm的双排沙障背风侧基本上无积沙分布,高立式沙障逐渐失去了防护作用。经野外验证真实值与模拟值的最大相对误差为8.18 %,最小相对误差为1.32 %,验证了模拟的合理性,该研究成果较好地反映了高立式沙障周围的风沙运动情况,为后续研究提供了数据基础和依据。

       

      Abstract: Abstract:This study aims to explore the movement law of wind and sand for the high vertical nylon mesh sand barrier, thereby to make up for the difficulty in the collecting data from field experiments, particularly on the sound reference for engineering sand control. Taking the Dengkou-Ustai sand-crossing highway as the background, a combination of the FLUENT numerical simulation and field test was used to investigate the design parameters of barrier rows, heights of sand barriers, and inlet wind speeds. A numerical simulation was carried out to obtain the change of wind speed, as well as the sand distribution of windward side, leeward side, and transition zone of net sand barrier. A field experiment was conducted to measure the specific parameters, and then the recorded data was later used for the error and linear correlation analysis. The results show that the air flow field in the horizontal direction represented in the form of "V" and "W" in the vertical sand barriers under different design parameters. The profile of wind speed shaped mainly in "S" for the transition zone of sand barriers. It infers that the wind speed has reversed airflow at this time, forming a vortex area or wind shadow area. The height of sand barrier directly determined the form and scope of flow field at the leeward side of sand barrier, as well as the cost of the project.When the wind speed is 8 m/s, as the number and height of barriers increased, the wind-proof effect became more obvious, and the amount of sand accumulation showed an increasing trend, and the influence ranges of single row, double row, three row sand barriers were from first row sand barrier to behind it 6, 13 and 20 m; when the wind speed is 10 m/s, as the height of the sand barrier increased, the airflow demarcation point gradually rised. The airflow demarcation points of sand barriers with heights 60, 100, 120, 150 cm were 0.8, 1.2, 1.5, 2.0 m, respectively. The airflow gradually returned to the wind speed in the wilderness, as the airflow moved away from the sand barrier. When the wind speed increased above 15m/s, the high vertical sand barrier gradually lost its protective effect. Error analysis was used to verify the high reliability of data, where the minimum relative error was 1.32%, the maximum relative error was 8.18%. The numerical model can be used to serve as an alternative approach for the insufficient data in field experiments. The combination of numerical simulation and field test can be used to mutually verify the optimal predict model in the preliminary screening for the indoor use, and acquire the movement rules of wind and sand, indicating an achievement can be gained in the effort at the field. The measurement cost normally was high, while the speed gradient of wind was not easy to measurement. A recommendation was made during this time that the design parameters can be reasonably selected according to the local wind conditions in the actual laying in the field.

       

    /

    返回文章
    返回