盛丰, 文鼎, 熊祎玮, 王康. 基于电阻率层析成像技术的农田土壤优先流原位动态监测[J]. 农业工程学报, 2021, 37(8): 117-124. DOI: 10.11975/j.issn.1002-6819.2021.08.013
    引用本文: 盛丰, 文鼎, 熊祎玮, 王康. 基于电阻率层析成像技术的农田土壤优先流原位动态监测[J]. 农业工程学报, 2021, 37(8): 117-124. DOI: 10.11975/j.issn.1002-6819.2021.08.013
    Sheng Feng, Wen Ding, Xiong Yiwei, Wang Kang. In-situ monitoring of preferential soil water flow with electrical resistivity tomography technology[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2021, 37(8): 117-124. DOI: 10.11975/j.issn.1002-6819.2021.08.013
    Citation: Sheng Feng, Wen Ding, Xiong Yiwei, Wang Kang. In-situ monitoring of preferential soil water flow with electrical resistivity tomography technology[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2021, 37(8): 117-124. DOI: 10.11975/j.issn.1002-6819.2021.08.013

    基于电阻率层析成像技术的农田土壤优先流原位动态监测

    In-situ monitoring of preferential soil water flow with electrical resistivity tomography technology

    • 摘要: 针对现有观测技术无法原位监测和判别农田土壤优先流类型、发育位置和演化过程的问题,该研究采用电阻率层析成像技术对野外大尺度条件下的NaCl溶液入渗过程进行原位监测,根据不同时刻监测的剖面视电阻率分布对试验区域的土壤结构分布特征进行分析,对优先流通道发育位置、优先流类型和演化过程进行识别,同时对电阻率层析成像技术识别优先流的精度进行研究。结果表明,试验区域的土壤结构性质不均匀,水平方向5.0~10.0 m范围内的土壤较水平方向0~5.0 m范围内的土壤更为密实;入渗过程中在试验区域土壤疏松区水平方向4.0~5.0 m区间中有非均质指流形成;该指流通道在灌入NaCl溶液9~14 min完全形成,在灌入NaCl溶液60 min时完全退化成基质流;幂函数模型可用来建立剖面视电阻率与Cl-浓度之间的关系。研究成果对农田土壤优先流发育位置与演化过程的原位监测与识别以及防治因水和溶质优势入渗而引起的资源浪费、环境污染和工程地质灾害等具有参考价值。

       

      Abstract: Abstract: Preferential flow, which contributes to the rapid water flow and solute transport in unsaturated soils, is common in the natural unsaturated soils. Preferential flow allows irrigated water and applied agriculture chemicals to move through unsaturated zone to groundwater table quickly with limited degradation and filtration, increasing the losses of applied resources and energy, and making the groundwater under high contamination risks. The non-equilibrium water movement, via preferential flow channel, to deep soil or even groundwater is one of the important factors inducing engineering and geological disasters such as land subsidence and collapse, landslide, debris flow and mountain collapse. However, the capturing of its dynamic process, especially the identification and judgment on the type, position and evolution of preferential flow without destroying soil structure, is still the hot topic and hard nut to crack in both science and technology all over the world. In this research, Electrical Resistivity Tomography (ERT) was applied to monitor the filed infiltration process of NaCl solution in situ. The distribution and change of apparent electrical resistivity of the monitored soil profile was measured at different time during infiltration. And the distribution of Cl- concentration of the monitored soil profile was analyzed in laboratory by soil sampling after infiltration. Based on these measured data, the heterogeneous distribution characteristics of soil structure, and the position, type and evolution of preferential flow in the monitored soil profile were analyzed and identified. Besides, the relationship between apparent electrical resistivity and Cl- concentration of the monitored soil profile was analyzed to evaluate the precision of applying ERT to identify preferential infiltration. The results showed that soil structure and properties affected the movement and distribution of applied NaCl solution, on the contrary, the movement and distribution of applied NaCl solution also affected the soil electrical conductivity and resistivity. Thus, the distribution characteristics of soil structure and properties were able to be detected by comparing the ERT monitored distribution of soil electrical resistivity before and after infiltration. The structure of the soil profile monitored by ERT was not uniform, with the soil within the horizontal direction of 5.0-10.0 m being much denser than that within the horizontal direction of 0-5.0 m. The preferential flow channel that constrained the applied NaCl solution with a greater concentration obviously changed the distributions of soil electrical conductivity and resistivity. And the distributions of soil electrical conductivity and resistivity changed as the preferential flow developed. Thus, the kind, generation position and evolution process of preferential flow were able to be detected by comparing the ERT monitored distribution of soil electrical resistivity at different time during the preferential flow process. During the infiltration process, a heterogeneous fingering flow was developed in the loose soil area within the horizontal direction of 4.0-5.0 m. The fingering channel was completely formed during 9-14 minutes after the application of NaCl solution to the monitored soil surface, and the preferential flow completely degraded to matrix flow no late than 60 minutes after the application of NaCl solution to the monitored soil surface. Power function was capable of establishing relationship equation between apparent electrical resistivity monitored by ERT and the measured Cl- concentration of the monitored soil profile (the coefficient of determination of 0.690). As the preferential flow repeated along the same path once the preferential flow was formed, the ERT monitoring the infiltration process of NaCl solution was of good efficiency in identifying the position and evolution of preferential flow in engineering and geology survey. This results provide valuable information for the prevention and control of losses of applied resources and energy, groundwater contamination and engineering and geological disasters caused by preferential soil water flow.

       

    /

    返回文章
    返回