帅爽, 张志, 张天, 肖成志, 陈思, 马梓程, 谢翠容. 结合ZY-1 02D光谱与纹理特征的干旱区植被类型遥感分类[J]. 农业工程学报, 2021, 37(21): 199-207. DOI: 10.11975/j.issn.1002-6819.2021.21.023
    引用本文: 帅爽, 张志, 张天, 肖成志, 陈思, 马梓程, 谢翠容. 结合ZY-1 02D光谱与纹理特征的干旱区植被类型遥感分类[J]. 农业工程学报, 2021, 37(21): 199-207. DOI: 10.11975/j.issn.1002-6819.2021.21.023
    Shuai Shuang, Zhang Zhi, Zhang Tian, Xiao Chengzhi, Chen Si, Ma Zicheng, Xie Cuirong. Method for classifying vegetation types in arid areas combining spectral and textural features of ZY-1 02D[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2021, 37(21): 199-207. DOI: 10.11975/j.issn.1002-6819.2021.21.023
    Citation: Shuai Shuang, Zhang Zhi, Zhang Tian, Xiao Chengzhi, Chen Si, Ma Zicheng, Xie Cuirong. Method for classifying vegetation types in arid areas combining spectral and textural features of ZY-1 02D[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2021, 37(21): 199-207. DOI: 10.11975/j.issn.1002-6819.2021.21.023

    结合ZY-1 02D光谱与纹理特征的干旱区植被类型遥感分类

    Method for classifying vegetation types in arid areas combining spectral and textural features of ZY-1 02D

    • 摘要: 高光谱遥感技术已广泛应用于植被类型制图。然而,稀疏植被冠层覆盖和土壤背景影响仍然是干旱区植被类型遥感分类的主要挑战,单独利用遥感数据光谱或纹理特征难以获得可靠的分类精度和稳定性。广义正态分布优化算法(Generalized Normal Distribution Optimization,GNDO)的特征优选结果在质量和稳定性方面相较传统优化算法具有优势,但目前还未应用于高光谱波段选取研究。为探索结合ZY-1 02D光谱与纹理特征进行干旱区植被类型遥感分类的可行性,验证GNDO方法应用于高光谱波段选取的有效性,同时探讨不同数量训练像元条件下,各特征选取方法的选择结果差异和对植被类型分类精度的影响,该研究以青海省都兰县宗加镇为例,在随机选取各分类类别不同数量训练像元(30、50、100、150、200)基础上,分别利用遗传算法(Genetic Algorithm,GA)、粒子群优化算法(Particle Swarm Optimization,PSO)、灰狼优化算法(Grey Wolf Optimization,GWO)以及GNDO算法进行高光谱波段选取并对比结果,同时利用灰度共生矩阵(Gray-Level Co-occurrence Matrix,GLCM)方法提取纹理特征,将提取的光谱特征和纹理特征组合成30组分类数据集,利用随机森林(Random Forest,RF)方法完成植被类型自动分类,对比不同分类数据集的分类精度。结果显示:蓝波段(400~450 nm)、红边波段(700~750 nm)和红波段(600~650 nm)对区分植被类型最敏感;基于光谱特征的分类数据集中,使用200个训练像元和GNDO方法进行特征优选获取的分类数据集(GNDO200)获得了最高的总体分类精度(80.44%);随着训练像元的增加,各分类数据集总体分类精度整体均呈上升趋势,不同的特征选择方法的分类精度对训练像元数量表现出不同的依赖程度;图像纹理特征的加入,明显提升了植被分类精度,将使用200个训练像元和GWO方法进行波段优选的结果与纹理特征结合的分类数据集(GWO200+TEX)获得了最高的总体分类精度(82.86%)。该研究验证了ZY1-02D国产高光谱卫星数据光谱纹理特征结合进行干旱区植被类型划分的潜力,证实了GNDO方法对高光谱波段选取的有效性,为高光谱植被类型制图中光谱、纹理特征选取提供了一种思路。

       

      Abstract: Abstract: With the continuous development of hyperspectral remote sensing technology, it has been widely used in vegetation mapping. However, sparse vegetation canopy, soil background, and spectral similarity between different types of vegetation are still the main challenges for vegetation types mapping in arid areas. As a result, it is difficult to achieve reliable classification accuracy by using spectral or texture features separately. Generalized Normal Distribution Optimization (GNDO) is a new feature optimization algorithm, with advantages in quality and stability of feature extraction results, comparing to traditional optimization algorithms. But it has not yet been applied to select bands of hyperspectral data. In order to validate the feasibility of combining ZY-1 02D spectral and texture features to classify vegetation types in arid areas, to verify the effectiveness of the GNDO method for bands selection of hyperspectral data, and to explore the effects of feature selection methods and training sample numbers on the classification accuracy of vegetation mapping, different Wrapper Optimization methods, such as Genetic Algorithm (GA), Particle Swarm Optimization (PSO), Grey Wolf Optimization (GWO), and GNDO, were applied to select spectral features for vegetation mapping, taking the area around Zongjia Town, Dulan County, Qinghai Province, China as the research area, then the band selection results of these methods were analyzed. Train sample set containing 30, 50, 100, 150, and 200 pixels per class were used to select bands and to train the classifier. Different methods (ALL (without bands selection), GA, PSO, GWO, GNDO) and different sizes of the trained sample sets (30, 50, 100, 150, and 200 pixels per class) were used to obtain 25 spectral feature-based classification data sets. Simultaneously, 8 texture features (mean, variance, homogeneity, contrast, dissimilarity, entropy, second moment) were extracted using the Gray-level co-occurrence matrix (GLCM) method, and selected on basis of distinguishability for vegetation types. Texture features (TEX) were combined with spectral feature-based classification data sets. The random forest classification method was applied to classify vegetation types for the classification data sets, and the classification accuracy of classification data sets was evaluated and compared. The results show that 1) the blue region (400-450 nm), the red edge region (700-750 nm), and the red region (600-650 nm) are the most sensitive to distinguish the vegetation types in the study area; 2) the GNDO200 achieved the highest overall classification accuracy (80.44%) among the spectral feature-based classification data sets, which was better than the classification accuracy (78.86%) using all bands (ALL200); 3) with the increase of training samples, the overall classification accuracy of each classification data set showed an increasing trend, the classification accuracy of different feature selection methods showed different reliance on the number of training samples; 4) image texture features significantly improved the classification accuracy, and the GWO200+TEX dataset had the highest overall classification accuracy (82.86%). This study could verify the potential of the ZY1-02D, the new hyperspectral satellite data, for the classification of vegetation types in arid areas, and provide an idea for the selection of spectral and texture features in hyperspectral vegetation mapping.

       

    /

    返回文章
    返回