窦海石, 张幽彤, 艾强, 赵心琦. 面向耦合分流动力构型的拖拉机犁耕工况控制策略[J]. 农业工程学报, 2022, 38(23): 41-49. DOI: 10.11975/j.issn.1002-6819.2022.23.005
    引用本文: 窦海石, 张幽彤, 艾强, 赵心琦. 面向耦合分流动力构型的拖拉机犁耕工况控制策略[J]. 农业工程学报, 2022, 38(23): 41-49. DOI: 10.11975/j.issn.1002-6819.2022.23.005
    Dou Haishi, Zhang Youtong, Ai Qiang, Zhao Xinqi. Control strategy for hybrid tractor plow conditions oriented to coupled-split dynamic configuration[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2022, 38(23): 41-49. DOI: 10.11975/j.issn.1002-6819.2022.23.005
    Citation: Dou Haishi, Zhang Youtong, Ai Qiang, Zhao Xinqi. Control strategy for hybrid tractor plow conditions oriented to coupled-split dynamic configuration[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2022, 38(23): 41-49. DOI: 10.11975/j.issn.1002-6819.2022.23.005

    面向耦合分流动力构型的拖拉机犁耕工况控制策略

    Control strategy for hybrid tractor plow conditions oriented to coupled-split dynamic configuration

    • 摘要: 当前中国农田集群和能源短缺现状极大地促进了混合动力拖拉机的推广与使用,然而混动拖拉机动态变载荷工况加大了整机功率的耦合与分流难度。为此,该研究以发动机和双电机为动力源,利用图论原理设计出满足全功率范围作业需求的两种动力系统耦合分流构型。此外,为实现整机的高能效目的,提出了基于马尔科夫决策的能量管理策略:首先根据拖拉机的载荷谱对整机作业环境进行辨识,采集犁耕作业环境下的拖拉机工作参数将需求功率抽象为马尔科夫决策中的状态转移过程;然后将整机能耗作为最优控制的成本函数,通过价值迭代函数求解最优控制律下电机2的工作区间。最后,采用硬件在环试验对提出的能量管理策略进行了有效性和可行性验证。试验结果表明,相比于传统基于规则的能量管理,提出的能量管理试验策略降低了7.2%的油耗。所设计的耦合分流构型拓展了拖拉机动力系统能量流的路径,直接耦合分流构型拟替代传统动力换挡的技术难点。能量管理策略在能效特性方面有一定优势,所提出的耦合分流动力构型为突破大马力拖拉机动力换挡的卡脖子技术提供了参考。

       

      Abstract: A hybrid power system has been widely used in Hybrid Electric Tractors (HETs) under farmland clustering and energy shortage in China. However, a great design difficulty can be found in the dynamic and variable load conditions of a working tractor on an unstructured road. Particularly, the powertrain flow can be used to realize the coupling and decoupling between the output power of the driven axle and Power Take-Off (PTO). It is a high demand to develop flexible powertrain for tractors, in order to improve the operation performance of agricultural machinery. Thus, the coupled-split powertrain system has been proposed with the principle of graph theory towards the single engine, dual motors, and clutch. All power ranges demand has been satisfied with the variable combination mode between the clutch and power units. In addition, the energy allocation can be optimized between the engine and motors in the background of non-linear loads. In this study, a Markov Decision Process (MDP) based Energy Management Strategy (EMS) was proposed to allocate the power between the engine and motors along with the dynamic and variable load. Firstly, the spectrum of the working load was collected in the period to distinguish the working scenarios. Specifically, the sample of the working environment included plains, hills, and basins. Secondly, the demand power in plowing was abstracted as the state transition of the MDP in the premise of tractor parameters collected under the plow condition, with which the comprehensive dynamics of tractor loads were mathematically formulated. Thirdly, energy consumption was defined as the cost function in the optimal control process, which was solved by the value iteration function. The working range of motor-2 was determined under the guidance of optimal control. In the actual plowing condition, the torque of motor-2 was optimized and determined along with the demand power and state of charge (SOC), which was converted to a look-up table and download in the Vehicle Control Unit (VCU). Finally, the effectiveness and feasibility of the system were validated with the hardware-in-loop test. Among them, the program was also conducted in the VCU on the actual test bench. Meanwhile, the model of the tractor was established for the co-simulation. The result indicated that the improved EMS reduced fuel consumption by 7.2%, compared with the traditional. The demand power forecast strategy further improved the energy efficiency characteristics of the drive motor in the plain plowing environment. In addition, the novel powertrain configurations of the tractor contained the direct and indirect coupled-split power system, which expanded the path of power flow between power units and wheels. Besides, the direct coupled-split configuration has the potential application to replace the technical difficulties of traditional power shifts and Continuously Variable Transmission (CVT). The new strategy can be expected to serve as high energy efficiency. The powertrain of coupled-split configuration can provide a strong reference to breaking through the difficult situation of power shift and CVT for high-power tractors. The finding can be expected to make great progress in the hybrid power system of the tractor in agricultural machinery.

       

    /

    返回文章
    返回