含水乙醇汽油直喷发动机燃烧与碳烟排放特性

    Combustion and soot emission characteristics of hydrous ethanol gasoline direct injection engine

    • 摘要: 为了深入分析含水乙醇对汽油直喷(Gasoline Direct Injection,GDI)发动机性能的影响,利用CONVERGE软件,结合耦合含水乙醇汽油燃烧机理和碳烟模型,进行了三维模拟,从微观角度研究了GDI发动机结合废气再循环(Exhaust Gas Recirculation,EGR)技术燃用含水乙醇汽油时的燃烧及碳烟生成与排放特性。结果表明:含水乙醇掺混比的增大有助于加快火焰传播速度,进一步缩短燃烧持续期。碳烟前驱物(PAHs)控制碳烟的成核和生长,含水乙醇汽油的含氧特性及高活性的OH可以抑制碳烟生成,与E0(含水乙醇体积分数为0)相比,E20W(含水乙醇体积分数为20%)的碳烟前驱物苯、萘、菲、芘的质量峰值分别降低了60.0%、54.5%、73.3%、52.4%,碳烟质量峰值降低了63.6%,碳烟数量密度峰值下降了40.0%。EGR的引入使燃烧效率降低,PAHs 和碳烟生成质量升高,碳烟数量密度降低,含水乙醇的添加能改善EGR环境中的燃烧效率,降低未燃HC和碳烟生成量。相比纯汽油,含水乙醇汽油结合EGR技术,弱化了EGR对燃烧和碳烟排放的负面影响。因此,EGR结合含水乙醇汽油能够改善发动机燃烧特性,降低发动机的碳烟等污染物排放,对提升GDI发动机性能和改善颗粒物排放有较好的作用。

       

      Abstract: In recent years, the gradual increase in automobile production has accelerated the consumption of petroleum resources, and a large amount of harmful exhaust gas has also brought great threats to the climate and human health. It is the general trend to seek low-carbon, clean and renewable alternative fuels and realize energy diversification. Gasoline direct injection (GDI) engines have been widely used due to the advantages of high efficiency and cleanliness, but the problem of higher particulate emissions has not yet been resolved. As an alternative fuel for engines, ethanol has the advantages of high- octane number, low pollution, strong renewability, safety and non-toxicity, and good compatibility with gasoline. Compared with absolute ethanol, hydrous ethanol is less sensitive to moisture in the air, and it is more stable when mixed with gasoline. Exhaust gas recirculation (EGR) technology can effectively reduce pumping losses, reduce fuel consumption, and reduce NOx emissions. The introduction of EGR in gasoline direct injection engines can lower the combustion temperature, and the dilution effect of exhaust gas can reduce the local concentration of the mixture, which is beneficial to inhibit the soot generated by the fuel cracking and dehydrogenation reactions. In this study, the three-dimensional simulation was carried out by using CONVERGE software coupled with the combustion mechanism of hydrous ethanol gasoline and the soot model, to explore the effects of the combination of hydrous ethanol and EGR on the combustion and soot generation characteristics of GDI engine. The results showed that the increase of the volume fraction of the hydrous ethanol accelerated the flame propagation speed, shortened the combustion duration. The soot precursors (PAHs) control the nucleation and growth of soot. The formation of soot can be inhibited by the oxygen-content characteristics of hydrous ethanol gasoline and the high activity OH. Compared with E0 (hydrous ethanol volume fraction is 0%), the peak mass of soot precursors of E20W (hydrous ethanol volume fraction is 20%) A1 (benzene), A2 (naphthalene), A3 (phenanthrene) and A4 (pyrene) were reduced by 60.0%, 54.5%, 73.3%, and 52.4%, respectively, the peak of soot mass was reduced by 63.6%, and the peak of soot quantity density was decreased by 40.0%. The introduction of EGR reduced the combustion efficiency, increased the mass of PAHs and soot generation, and reduced the soot quantity density. The addition of hydrous ethanol could improve the combustion efficiency in the EGR environment and reduce the amount of unburned HC and soot generation. Compared with pure gasoline, hydrous ethanol gasoline combined with EGR technology reduced the negative impact of EGR on combustion and soot emissions. It can be concluded that the combination of EGR and hydrous ethanol gasoline could improve combustion characteristics but decrease soot production, further enhance the performance while reduce particulate matter emissions of GDI engine.

       

    /

    返回文章
    返回