• EI
    • CSA
    • CABI
    • 卓越期刊
    • CA
    • Scopus
    • CSCD
    • 核心期刊

基于最优尺度选择的高分辨率遥感影像丘陵农田提取

陈 杰, 陈铁桥, 梅小明, 邵权斌, 邓 敏

陈 杰, 陈铁桥, 梅小明, 邵权斌, 邓 敏. 基于最优尺度选择的高分辨率遥感影像丘陵农田提取[J]. 农业工程学报, 2014, 30(5): 99-107. DOI: 10.3969/j.issn.1002-6819.2014.05.013
引用本文: 陈 杰, 陈铁桥, 梅小明, 邵权斌, 邓 敏. 基于最优尺度选择的高分辨率遥感影像丘陵农田提取[J]. 农业工程学报, 2014, 30(5): 99-107. DOI: 10.3969/j.issn.1002-6819.2014.05.013
Chen Jie, Chen Tieqiao, Mei Xiaoming, Shao Quanbin, Deng Min. Hilly farmland extraction from high resolution remote sensing imagery based on optimal scale selection[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2014, 30(5): 99-107. DOI: 10.3969/j.issn.1002-6819.2014.05.013
Citation: Chen Jie, Chen Tieqiao, Mei Xiaoming, Shao Quanbin, Deng Min. Hilly farmland extraction from high resolution remote sensing imagery based on optimal scale selection[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2014, 30(5): 99-107. DOI: 10.3969/j.issn.1002-6819.2014.05.013

基于最优尺度选择的高分辨率遥感影像丘陵农田提取

基金项目: 国家重点基础研究发展计划(973项目)(2012CB719906);国家863计划主题项目(2012AA121301);国家自然科学基金项目(41201428);中国博士后科学基金项目(2012M511762);中央高校基本科研业务费项目(2012QNZT076)

Hilly farmland extraction from high resolution remote sensing imagery based on optimal scale selection

  • 摘要: 农田测绘与粮食安全密切相关,高效经济的农田测绘是中国政府部门重点关注的工作之一。农田田块是农田测绘的基本要素,从遥感影像中提取农田田块信息是当前研究的热点。然而,丘陵地区农田形状不规则、光谱特征不明显导致农田信息提取困难,该文通过研究最优的农田分割尺度来提高农田田块信息提取的精度。首先,利用各向异性扩散算子在由Sobel得到的梯度图上生成多尺度梯度影像。然后,通过信息熵差异分析得到有效尺度范围。其次,利用标记分水岭算法对农田梯度影像进行分割获得多尺度农田信息。最后,利用非监督的全局评价方法在已得的有效尺度范围内确定农田提取的最优尺度,同时确定最优的农田提取结果。对比试验结果表明,该文方法能够有效地提取丘陵地区的农田田块,精度可以达到73.06%,比Mean-shift方法提取的精度高22.48%。该研究可为中国农田测绘提供技术参考。
    Abstract: Abstract: The growing population and accelerating urbanization have caused much illegal occupation of farmland, which seriously threat to national food security, social stability and economic development of our country. Farmland information extraction has become a hot issue in agricultural research field in the world. In addition, farmland mapping is closely related to the food security and is one of the most concerned issues of government departments. However, traditional technology of surveying and mapping is time consuming and labor costing, which is unable to adapt to the precise and effective information acquisition of farmland. The high resolution remote sensing imagery can provide more details of ground truth than low resolution imagery. However, the information mining in high resolution remote sensing imagery faces a big challenge caused by the complex ground environment. Farmland blocks in high resolution remote sensing imagery have various shapes, complicated texture and heterogeneous spectrum. The shape information is one of the most important content of farmland mapping. In this study, high resolution remote sensing imagery from QuickBird was used to precisely extract farmland in hilly area. And the method of farmland extraction combining multi-scale segmentation and optimal scale selection was put forward. Firstly, gradient image is generated by using Sobel gradient operator. In order to enhance the edge information and reduce the irrelevant information for farmland extraction, the multi-scale gradient images are filtered with anisotropic diffusion operator. Secondly, effective scale range of multi-scale gradient images is determined through the entropy difference analysis, which can reduce the amount of calculation of the multi-scale analysis in next stage. Thirdly, a marker driven watershed transform based on minima extension and minima imposition is applied to segment the multi-scale gradient images to produce multi-scale shape information of farmland with precious boundaries. Finally, the optimal scale identification for multi-scale segmentation is obtained by unsupervised segmentation evaluation method based on the global Moran'I and variance to automatically get the farmland block without manual intervention. The experimental results show that the multi-scale segmentation and optimal scale identification approach can be used to accurately discriminate farmland in hilly area. Farmland extraction accuracy of the proposed method is 73.06% which is 22.40% higher than the Mean-shift segmentation method with a better performance in farmland extraction in hilly area. The results can basically meet the requirements of drawing and revision for the large scale thematic mapping of farmland, showing that the proposed method can provide a technical assistance for the surveying and mapping of farmland.
  • [1] Hornby L, Li H. FEATURE-China's big step in rural reform; mapping tiny plots of farmland[EB/OL]. [2013-03-03] http://www.reuters.com/article/2013/02/06/ china-land-title-idUSL4N0B61HM20130206.[2] Addo K A. Urban and peri-urban agriculture in developing countries studied using remote sensing and in situ methods[J]. Remote Sensing, 2010, 2(2): 479-513.[3] 左丽君,张增祥,董婷婷,等. MODIS/NDVI和MODIS/EVI在耕地信息提取中的应用及对比分析[J].农业工程学报,2008,24(3):167-172.Zuo Lijun, Zhang Zengxiang, Dong Tingting, et al. Application of MODIS/NDVI and MODIS EVI to extracting the information of cultivated land and comparison analysis[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2008, 24(3): 167-172. (in Chinese with English abstract)[4] 孙丽,吴全,张松岭,等. 小地物比例提取在河北耕地遥感调查中的应用研究[J]. 农业工程学报,2006,22(2):79-82.Sun Li, Wu Quan, Zhang Songling, et al. Estimation of area ratios of small features in crop area obtained by remote sensing technique in Hebei province[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2006, 22(2): 79-82. (in Chinese with English abstract)[5] 陈杰,邓敏,肖鹏峰,等. 粗糙集高分辨率遥感影像面向对象分类[J]. 遥感学报, 2010,14(6):1139-1155.Chen Jie, Deng Min, Xiao Pengfeng, et al. Rough set theory based object-oriented classification of high resolution remotely sensed imagery[J]. Journal of Remote Sensing, 2010, 14(6): 1139-1155. (in Chinese with English abstract)[6] Ruiz L A, Recio J A, Fernández-Sarría A, et al. A feature extraction software tool for agricultural object-based image analysis[J]. Computers and Electronics in Agriculture, 2011, 76(2): 284-296.[7] 张永彬,王琳,孙丹峰,等. 基于遥感与GIS的唐山市路北区耕地时空变化[J]. 辽宁工程技术大学学报: 自然科学版,2010,29(3):404-407.[8] Zhang R Q, Zhu D L. Study of land cover classification based on knowledge rules using high-resolution remote sensing images[J]. Expert Systems with Applications, 2011, 38(4): 3647-3652.[9] Yang C H, Everitt J H, Murden D. Evaluating high resolution SPOT 5 satellite imagery for crop identification[J]. Computers and Electronics in Agriculture, 2011, 75(2): 347-354.[10] Du P J, Li X L, Cao W, et al. Monitoring urban land cover and vegetation change by multi-temporal remote sensing information[J]. Mining Science and Technology, 2010, 20(6): 922-932.[11] Otukei J R, Blaschke T. Land cover change assessment using decision trees, support vector machines and maximum likelihood classification algorithms[J]. International Journal of Applied Earth Observation and Geoinformation, 2010, 12(Supp 1): 27-31.[12] Tseng M H, Chen S J, Hwang G H, et al. A genetic algorithm rule-based approach for land-cover classification[J]. ISPRS Journal of Photogrammetry & Remote Sensing, 2008, 63(2): 202-212.[13] Rydberg A, Borgefors G. Integrated method for boundary delineation of agricultural fields in multispectral satellite images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2001, 39(11): 2514-2520.[14] Mokhtarian F, Suomela R. Robust image corner detection through curvature scale space[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1998, 20(12): 1376-1381.[15] Carleer A P, Wolff E. Urban land cover multi-level region-based classification of VHR data by selecting relevant features[J]. International Journal of Remote Sensing, 2006, 27(5/6): 1035-1051.[16] 陈杰,邓敏,肖鹏峰,等. 纹理频谱分析的高分辨率遥感影像最佳尺度选择[J]. 遥感学报,2011,15(3):492-511.Chen Jie, Deng Min, Xiao Pengfeng, et al. Optimal spatial scale choosing for high resolution imagery based on texture frequency analysis[J]. Journal of Remote Sensing, 2011, 15(3): 492-511. (in Chinese with English abstract)[17] Canny J F. A computational approach to edge detection[J]. IEEE Transactions on Pattern Analysis and MachineIntelligence, 1986, 8 (6): 679-698.[18] Perona P, Malk J. Scale-space and edge detection using anisotropic diffusion[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1990, 12(7): 629-639.[19] Shannon C E. A mathematical theory of communication[J]. The Bell System Technical Journal, 1948, 27(3): 379-423.[20] 孙君顶,丁振国,周利华. 基于图像信息熵与空间分布熵的彩色图像检索方法[J]. 红外与毫米波学报,2005,24(2):135-139.Sun Junding, Ding Zhenguo, Zhou Lihua. Image retrival based on image entropy and spatial distribution entropy[J]. Infrared Millim. Waves, 2005,24(2):135-139. (in Chinese with English abstract)[21] Studholme C, Hill D L G, Hawkes D J. An overlap invariant entropy measure of 3D medical image alignment[J]. Pattern Recognition, 1991, 32(1): 71-86.[22] Vincent L, Soille P. Watersheds in digital spaces: an efficient algorithm based on immersion simulations[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1991, 13(6): 583-598.[23] Johnson B, Xie Z. Unsupervised image segmentation evaluation and refinement using a multi-scale approach[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2011, 66: 473-483.[24] Espindola G, Camara G, Reis I, et al. Parameter selection for region growing image segmentation algorithms using spatial autocorrelation[J]. International Journal of Remote Sensing, 2006, 27(14): 3035-3040.[25] Fukunaga K, Hostetler L D. The estimation of the gradient of a density function with applications in pattern recognition[J]. IEEE Transactions on Information Theory, 1975, 21(1): 32-40.[26] Georgescu B, Shimshoni I, Meer P. Mean shift based clustering in high dimensions: A texture classification example[C]//Proceedings of the IEEE International Conference on Computer Vision, 2003, 1: 456-463.[27] Polak M, Zhang H, Pi M H. An evaluation metric for image segmentation of multiple objects[J]. Image and Vision Computing, 2009, 27(8): 1223-227.[28] 潘家文,朱德海,严泰来,等. 遥感影像空间分辨率与成图比例尺的关系应用研究[J]. 农业工程学报,2005,21(9):124-128.Pan Jiawen, Zhu Dehai, Yan Tailai, et al. Application of the relationship between spatial resolution of RS image and mapping scale[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2005, 21(9): 124-128. (in Chinese with English abstract)
计量
  • 文章访问数:  2788
  • HTML全文浏览量:  5
  • PDF下载量:  1233
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-09-25
  • 修回日期:  2014-01-24
  • 发布日期:  2014-02-28

目录

    /

    返回文章
    返回