• EI
    • CSA
    • CABI
    • 卓越期刊
    • CA
    • Scopus
    • CSCD
    • 核心期刊

黑龙江省土壤可蚀性K值特征分析

周宁, 李超, 琚存勇, 马亚怀

周宁, 李超, 琚存勇, 马亚怀. 黑龙江省土壤可蚀性K值特征分析[J]. 农业工程学报, 2015, 31(10): 182-189. DOI: 10.11975/j.issn.1002-6819.2015.10.024
引用本文: 周宁, 李超, 琚存勇, 马亚怀. 黑龙江省土壤可蚀性K值特征分析[J]. 农业工程学报, 2015, 31(10): 182-189. DOI: 10.11975/j.issn.1002-6819.2015.10.024
Zhou Ning, Li Chao, Ju Cunyong, Ma Yahuai. Analysis of characteristics of soil erodibility K-value in Heilongjiang province[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2015, 31(10): 182-189. DOI: 10.11975/j.issn.1002-6819.2015.10.024
Citation: Zhou Ning, Li Chao, Ju Cunyong, Ma Yahuai. Analysis of characteristics of soil erodibility K-value in Heilongjiang province[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2015, 31(10): 182-189. DOI: 10.11975/j.issn.1002-6819.2015.10.024

黑龙江省土壤可蚀性K值特征分析

基金项目: 中央高校基本科研业务费专项资金(DL12CA12)

Analysis of characteristics of soil erodibility K-value in Heilongjiang province

  • 摘要: 土壤可蚀性K值是评价土壤对侵蚀敏感程度和进行土壤侵蚀预报的重要参数,是支撑水土保持监测、预报和规划的重要基础。为了建立基于通用土壤流失方程的土壤侵蚀量估算数据库,需要掌握了解K值特征,该文采用对变量数字特征和离散程度的传统统计,以及克里格插值的地统计方法分析黑龙江省土壤普查相关数据和土壤可蚀性K值特征。结果表明:1)主要土类间土壤质地组分含量具有显著差异性,粗粉粒、细粉粒和黏粒含量服从正态分布且块金效应均大于75%,表现出很弱的空间相关性。2)主要土类K值期望,风砂土最大、白浆土最小,变异系数均小于10%,呈弱变异性。3)土壤质地K值期望,砂壤土最大、中黏土最小,总体上随物理性黏粒含量的增大而减小,随物理性砂粒含量减小而减小,除重黏土变异系数为19.99%,呈中等变异性外,其他土壤质地变异系数均小于10%,呈弱变异性。4)随表层厚度的增加,K值期望呈线性显著(R2=0.83)的平缓递减趋势。5)不同土壤侵蚀类型区域的K值及其分布特征差异较大,类型相同而强度不同的土壤侵蚀区域K值及其分布具有相似的分布规律。6)K值块金效应为73.30%,具有中等的空间相关性,自西向东呈平缓的线性递减分布趋势,由北至南呈上开广口抛物线状分布趋势,其极大值区与风砂土主要分布区,2个极小值区与白浆土、黑土主要分布区,具有空间一致性,此外,水土保持区划中分区的功能定位体现了K值的分布特征。该研究可为黑土资源的保护与修复提供科学依据,对黑土地能够继续、持续地保障粮食生产安全具有积极意义。
    Abstract: As the largest distribution area of black soil in China, Heilongjiang Province is undertaking important responsibility of food safety for country. However, due to lack of protection, it has become one of those regions undergoing the most serious soil erosion and is gradually losing its basic role of important agricultural production. Soil erodibility index (K-value) is not only an important parameter for evaluating soil's sensitivity to erosion and forcasting soil erosion process but also a key foundation for monitoring and planning of soil and water conservation. In this paper, in terms of soil census data, the characteristics of K-value were analyzed by traditional statistical and geostatistical methods. Results showed that: 1) The soil texture presented significant difference among main soil types; the contents of coarse silt, fine powder and clay obeyed normal distribution, and their spatial correlations were weak. 2) The average K-value of aeolian sandy soils was the largest (0.0281), that of albic soils was the smallest(0.0234), and all K-value of main soil types had weak variability. 3)The average K-value of sandy loam was the largest(0.0281)while moderate clay had the smallest K-value(0.0201). Generally, the average K-value reduced with the increasing physical clay content as well as the decreasing physical sand content, and all soil textures had weak variability but for heavy clay having moderate variability The difference of soil texture either in same soil type or among different soil types was effected by their components content, and this difference was also reflected in K-value. 4) There was a significant linear relationship (R2=0.83) between the average K-value and soil surface thickness and furthermore, the K-value would gently descend when the thickness increased. In other words, the thinner top soil resulted from soil and water loss can cause the increasing K-value and amplify the probability of soil erosion. Thus, the top soil would become thinner and thinner and even disappear. 5) The K-value's distribution characteristics of the areas with various soil erosion types showed obvious difference, however, those regions belonging to same soil erosion type had similar distributions although they were in different soil erosion intensity levels. In water erosion region, the distribution area of different K-values showed an increasing trend in the section from 0.0220 to 0.0241, and got the largest area in the interval from 0.0241 to 0.0245 while a decreasing trend occurred in the zone from 0.0245 to 0.0276. Generally, the distribution area of K-value increased with the increasing of K-value in wind erosion region. The K-value of freezing-thawing erosion region converged in the zone from 0.0258 to 0.0268, and the K-value of engineering erosion region was centered in the zone from 0.0229 to 0.0245. 6) The K-value had a moderate spatial correlation, and showed a gentle linear downward trend from the west to the east, as a distribution of concave parabolic shape occurred in north-south direction. In addition, the maximum K-value mostly appeared in the area of aeolian sandy soil, and the two minimum K-value areas were almost related to the areas of black soils and albic soils, respectively. We also found the distribution features of K-value coincided with the soil and water conservation regionalization well. The K-value grid database produced in this paper would provide basic parameters for soil erosion monitoring and prediction, and controlling of soil and water loss, especially provide scientific basis for the protection and restoration of black soil resources, and impose a positive effect on sustainable grain production safety in the black land. It was necessary to note that the data used in this work were a little old and their soil profile samples were not collected randomly, and thus this shortage of the data may make our results less reliable. Besides, since we lacked newer data, we didn't further analyze relevant spatial and temporal dynamic changes of K-value.
  • [1] 中华人民共和国国家统计局. 国家统计局关于2014年粮食产量的公告[EB/OL]. 2014[2014-12-04]. http://www. stats.gov.cn/tjsj/zxfb/201412/t20141204_648275.html.
    [2] 水利部,中国科学院,中国工程院. 中国水土流失防治与生态安全:东北黑土区卷[M]. 北京:科学出版社,2010.
    [3] 蔡壮,沈波. 东北黑土区水土流失防治在保障国家粮食生产中的地位与作用[J]. 中国水利,2007(20):37-38.
    [4] 王念忠,沈波. 搞好黑土区水土保持保障国家粮食安全[J]. 中国水土保持,2012(1):6-8.
    [5] 刘兴土,阎百兴. 东北黑土区水土流失与粮食安全[J]. 中国水土保持,2009(1):17-19.
    [6] 刘宝元,阎百兴,沈波,等. 东北黑土区农地水土流失现状与综合治理对策[J]. 中国水土保持科学,2008,6(1):1-8.Liu Baoyuan, Yan Baixing, Shen Bo, et al. Current status and comprehensive control strategies of soil erosion for cultivated land in the Northeastern black soil area of China[J]. Science of Soil and Water Conservation, 2008, 6(1): 1-8. (in Chinese with English abstract)
    [7] 中共中央国务院. 中共中央国务院关于加大改革创新力度 加快农业现代化建设的若干意见[EB/OL]. 2015[2015-2-1]. http://www.gov.cn/zhengce/2015-02/01/content_2813034.htm.
    [8] Wischmeier W H, Smith D D. A universal soil-loss equation to guide conservation farm planning[J]. Transactions 7th int. Congr. Soil Sci., 1960(1): 418-425.
    [9] Renard K G, Foster G R, Weesies G A, et al. Predicting soil erosion by water: a guide to conservation planning with the revised universal soil loss equation (RUSLE)[J]. Agriculture Handbook (Washington), 1997(703).
    [10] 梁音,刘宪春,曹龙熹,等. 中国水蚀区土壤可蚀性K值计算与宏观分布[J]. 中国水土保持,2013(10):35-40.
    [11] 张科利,彭文英,杨红丽. 中国土壤可蚀性值及其估算[J]. 土壤学报,2007,44(1):7-13.Zhang Keli, Peng Wenying, Yang Hongli. Soil erodibility and its estimation in China[J]. Acta Pedologica Sinica, 2007, 44(1): 7-13. (in Chinese with English abstract)
    [12] 吕喜玺,沈荣明. 土壤可蚀性因子K值的初步研究[J]. 水土保持学报,1992,6(1):63-70.Lu Xixi, Shen Rongming. A preliminary study on the values K of soil erosibility factor[J]. Journal of Soil and Water Conservation, 1992, 6(1): 63-70. (in Chinese with English abstract)
    [13] 卜兆宏,李全英. 土壤可蚀性(K)值图编制方法的初步研究[J]. 农村生态环境,1995,11(1):5-9.Bo Zhaohong, Li Quanying. Preliminary study on the method of soil erodibility value map-ping[J]. Rural Eco-Environment, 1995, 11(1): 5-9. (in Chinese with English abstract)
    [14] 门明新,赵同科,彭正萍,等. 基于土壤粒径分布模型的河北省土壤可蚀性研究[J]. 中国农业科学,2004,37(11):1647-1653.Men Mingxin, Zhao Tongke, Peng Zhengping, et al. Study on the soil erodibility based on the soil particle-size distribution in Hebei Province[J]. Scientia Agricultura Sinica, 2004, 37(11): 1647-1653. (in Chinese with English abstract)
    [15] 高德武. 黑龙江省土壤流失方程中土壤可蚀性因子(K)的研究[J]. 国土与自然资源研究,1993(3):40-43.
    [16] 翟伟峰,许林书. 东北典型黑土区土壤可蚀性K值研究[J]. 土壤通报,2011,42(5):1209-1213.Zhai Weifeng, Xu Linshu.Study on the soil erodibility K-value in the typical black region of northeast China[J]. Chinese Journal of Soil Science, 2011, 42(5): 1209-1213. (in Chinese with English abstract)
    [17] 翟伟峰. 齐齐哈尔市典型黑土区土壤可蚀性K值研究[D]. 长春:东北师范大学,2008.Zhai Weifeng.Study on the Soil Erodibility K-value in the Typical Black Region of Qiqihar City[D]. Changchun: Northeast Normal University, 2008. (in Chinese with English abstract)
    [18] 王彬,郑粉莉,王玉玺. 东北典型薄层黑土区土壤可蚀性模型适用性分析[J]. 农业工程学报,2012,28(6):126-131.Wang Bin, Zheng Fenli, Wang Yuxi. Adaptability analysis on soil erodibility models in typical thin layer black soil area of Northeast China[J]. Transactions of the Chinese Society of Agricultural Engineering(Transcactions of the CSAE), 2012, 28(6): 126-131. (in Chinese with English abstract)
    [19] 曾大林,李智广. 第二次全国土壤侵蚀遥感调查工作的做法与思考[J]. 中国水土保持,2000(1):28-31.
    [20] 白建宏,王玉玺,刘凤飞,等. 黑龙江省典型黑士区土壤侵蚀潜在危险度调查研究[J]. 中国水土保持,2004(11):16-17.
    [21] 王彬. 土壤可蚀性动态变化机制与土壤可蚀性估算模型[D]. 西北农林科技大学,2013.Wang Bin. Dynamic Mechanism of Soil Erordibility and Soil Erodibility Calculation Model[D]. Yangning: Northwest A&F University, 2013. (in Chinese with English abstract)
    [22] Shirazi M A, Boersma L. A unifying quantitative analysis of soil texture[J]. Soil Science Society of America Journal, 1984, 48(1): 142-147.
    [23] 江厚龙,王新中,刘国顺,等. 烟田土壤质地的空间变异性研究[J]. 中国生态农业学报,2010,18(4):724-729.Jiang Houlong, Wang Xinzhong, Liu Guoshun, et al. Spatial variability of soil texture in tobacco field[J]. Chinese Journal of Eco-Agriculture, 2010, 18(4): 724-729. (in Chinese with English abstract)
    [24] 王绍强,朱松丽,周成虎. 中国土壤土层厚度的空间变异性特征[J]. 地理研究,2001,20(2):161-169.Wang Shaoqiang, Zhu Songli, Zhou Chenghu. Characteristics of spatial variability of soil thickness in China[J]. Geographical research, 2001, 20(2): 161-169. (in Chinese with English abstract)
    [25] 卢纹岱. SPSS for Windows 统计分析[M]. 3版. 北京:电子科技出版社,2003:92-94.
    [26] 张世文,王胜涛,刘娜,等. 土壤质地空间预测方法比较[J]. 农业工程学报,2011,27(1):332-339.Zhang Shiwen, Wang Shengtao, Liu Na, et al. Comparison of spatial prediction method for soil texture[J]. Transactions of the Chinese Society of Agricultural Engineering (Transcactions of the CSAE), 2011, 27(1): 332-339. (in Chinese with English abstract)
    [27] 张世文,黄元仿,苑小勇,等. 县域尺度表层土壤质地空间变异与因素分析[J]. 中国农业科学,2011,44(6):1154-1164.Zhang Shiwen, Huang Yuanfang, Yuan Xiaoyong, et al. The spatial variability and factor analyses of top soil texture on a county scale[J]. Scientia Agricultura Sinica, 2011, 44(6): 1154-1164. (in Chinese with English abstract)
    [28] 江厚龙,刘淑端,许安定,等. 不同取样方式下土壤质地空间插值的精度分析[J]. 中国生态农业学报,2014,22(2):217-224.Jiang Houlong, Liu Shuduan, Xu Anding, et al. Precision analysis on spatial interpolation of soil texture in different sampling methods[J]. Chinese Journal of Eco-Agriculture, 2014, 22(2): 217-224. (in Chinese with English abstract)
    [29] 周璟,张旭东,何丹,等. 小流域土壤可蚀性的空间变异及其在不同土地类型下的比较[J]. 土壤通报,2011,42(3):715-720.Zhou Jing, Zhang Xudong, He Dan, et al. Spatial variability of soil erodibility and its comparison between different landuse types of small watershed[J]. Chinese Journal of Soil Science, 2011, 42(3): 715-720. (in Chinese with English abstract)
    [30] 吴昌广,曾毅,周志翔,等. 三峡库区土壤可蚀性K值研究[J]. 中国水土保持科学,2010,8(3):8-12.Wu Changguang, Zeng Yi, Zhou Zhixiang, et al. Soil erodibility K value in three gorges reservoir area[J]. Science of Soil and Water Conservation, 2010, 8(3): 8-12. (in Chinese with English abstract)
    [31] 刘吉峰,李世杰,秦宁生,等. 青海湖流域土壤可蚀性K值研究[J]. 干旱区地理,2006,29(3):321-326.Liu Jifeng, Li Shijie, Qin Ningsheng, et al. Soil erodiable K in the catchment of Qinghai Lake[J]. Arid Land Geography, 2006, 29(3): 321-326. (in Chinese with English abstract)
    [32] 刘斌涛,陶和平,史展,等. 青藏高原土壤可蚀性K值的空间分布特征[J]. 水土保持通报,2014,34(4):11-16.Liu Bintao, Tao Heping, Shi Zhan, et al. Spatial distribution characteristics of soil erodibility K-Value in tibet plateau[J]. Bulletin of soil and water conservation, 2014, 34(4): 11-16. (in Chinese with English abstract)
    [33] 王敬贵,亢庆,邝高明,等. 尖山河小流域土壤可蚀性K值空间变异研究[J]. 生态环境学报,2014,23(4):555-560.Wang Jinggui, Kang Qing, Kuang Gaoming, et al. Study on spatial variability of soil erodibility K-Value in Jianshan river small watershed Ecology and Environmental Sciences, 2014, 23(4): 555-560. (in Chinese with English abstract)
    [34] 张科利,蔡永明,刘宝元,等. 黄土高原地区土壤可蚀性及其应用研究[J]. 生态学报,2001,21(10):1687-1695.Zhang Keli, Cai Yongming, Liu Baoyuan, et al. Evaluation of soil erodibility on the Loess Plateau[J]. Acta Ecologica Sinica, 2001, 21(10): 1687-1695. (in Chinese with English abstract)
    [35] 李丹凤,邵明安. 一维马尔可夫链模拟黑河中游流域土壤质地垂向变异[J]. 农业工程学报,2013,29(5):71-80.Li Danfeng, Shao Ming'an. One-dimensional Markov chain simulation of vertical change of soil texture in middle reaches of Heihe river, northwest China[J]. Transactions of theChinese Society of Agricultural Engineering (Transcactions of the CSAE), 2013, 29(5): 71-80. (in Chinese with English abstract)
    [36] 张金池,李海东,林杰,等. 基于小流域尺度的土壤可蚀性K值空间变异[J]. 生态学报,2008,28(5):2199-2206.Zhang Jinchi, Li Haidong, Lin Jie, et al. Spatial variability of soil erodibility (K-Factor) at a catchment scale in China[J]. Acta Ecologica Sinica, 2008, 28(5): 2199-2206. (in Chinese with English abstract)
    [37] 宋阳,刘连友,严平,等. 土壤可蚀性研究述评[J]. 干旱区地理,2006,29(1):124-131.Song Yang, Liu Lianyou, Yan Ping, et al. A review of soil erodibility research[J]. Arid Land Geogr, 2006, 29(1): 124-131. (in Chinese with English abstract)
    [38] SL 190-2007,土壤侵蚀分类分级标准[S].
计量
  • 文章访问数:  2458
  • HTML全文浏览量:  2
  • PDF下载量:  1616
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-02-12
  • 修回日期:  2015-04-12
  • 发布日期:  2015-05-14

目录

    /

    返回文章
    返回