秸秆还田对黑土亚表层微生物群落结构的影响特征及原因分析

    Effects and analysis of straw returning on subsoil microbial community structure in black soil

    • 摘要: 为明确切碎秸秆与秸秆颗粒对黑土亚表层土壤微生物群落结构的影响效应,从而评价不同秸秆还田方式对亚表层的培肥效果,该研究于2016-2018年在东北黑土区进行一次性玉米秸秆深埋还田试验,设置切碎秸秆低量(QS1)、切碎秸秆高量(QS5)、秸秆颗粒低量(KL1)与秸秆颗粒高量(KL5)4种秸秆还田处理,并与秸秆不还田(CK)进行对比,于每年玉米收获季对土壤理化指标及微生物菌群结构进行监测。结果表明,1)秸秆还田第1年,切碎秸秆处理显著提高土壤总磷脂脂肪酸含量及真菌摩尔百分数,其高量处理较CK最高增加71.0%和120.5%,而秸秆颗粒处理对细菌、革兰氏阳性菌和革兰氏阴性菌的摩尔百分数增幅更显著,其高量处理最高增加41.6%、29.7%和26.3%;还田第2年高量处理显著提高各菌群磷脂脂肪酸含量,且切碎高量处理的真菌摩尔百分数含量显著高于颗粒高量处理21.0%;还田第3年仅高量处理下的菌群结构有显著分异。2)还田初期切碎秸秆处理显著提高真菌:细菌比值,而低量还田则对革兰氏阳性菌和革兰氏阴性菌比有提高,随还田时间的增加,高量还田比值提高更显著,利于长期维持生态系统稳定性。3)秸秆高量还田可显著改变土壤理化因子水平,这是导致微生物群落结构分异的重要原因,其显著影响因子随还田年限而更替:第1年,土壤容重、酸碱度、全氮和碳氮比为显著(P<0.05)影响因素;第2年,土壤含水量、有机碳、碳氮比和土壤容重为极显著影响因素(P<0.01);第3年仅有机碳为显著因素(P<0.05)。切碎秸秆高量还田处理微生物群落结构分布与CK区分最为明显,对土壤真菌群落的调控能力更强,更适宜于东北黑土亚表层肥力的提升。

       

      Abstract: The subsoil layer is an important plow layer between topsoil and bottom soil. It is also an important crop root distribution area. However, long-term rotary tillage caused a thick plow pan in the subsoil layer of black soil in Northeast China, which seriously affected the operation of water, fertilizer, gas, and heat in the soil. As is known to all, straw returning is a win-win measure that can not only fertilize the soil but also ensure the utilization of waste resources. Chopped straw is a common way for local farmers to return to the field, while the pelletized straw return is a novel straw return management and is made of straw after highly comminuted and extruded. Our previous research proved that these two forms of deep straw return had a good effect on subsoil physicochemical properties. However, their effects on soil microbial community structure of the subsoil layer were still unknown. To clarified the effect of chopped straw and pelletized straw on soil microbial community structure in subsoil layer of the black soil, then, evaluated the effect of maize straw returning on fertilization of subsoil layer, a one-time deep straw returning experiment was conducted in the black soil of Northeast China from 2016 to 2018. There were five treatments in this experiment, including chopped straw with low dosage (QS1), chopped straw with high dosage (QS5), pelletized straw with low dosage (KL1), pelletized straw with high dosage (KL5), and no straw returning (CK). The contents of soil microbial flora phospholipid fatty acid, soil bulk density, soil water content, pH, soil organic carbon and total nitrogen were measured in the maize harvest season. The results showed that the microbial flora total phospholipid fatty acid content and fungi phospholipid fatty acid content were significantly increased by chopped straw treatments in the first year of straw returning, with a high dosage increasing up to 71.0% and 120.5%. The phospholipid fatty acid content of bacteria, Gram-positive bacteria and Gram-negative bacteria increased more significantly by pelletized treatment, with high dosage treatment up to 41.6%, 29.7% and 26.3%, and the phospholipid fatty acid content of fungi significantly increased in the second year. The phospholipid fatty acid content of each flora, especially the fungal phospholipid fatty acid content of chopped straw with high dosage treatment, was significantly higher than that of pelletized straw with high dosage treatment (21.0%), and only the flora with high dosage straw return had significant changes in the third year. Chopped straw treatment significantly increased the fungi-bacteria ratio in the early stage of straw returning, while low dosage straw returning increased the Gram-positive bacteria: Gram-negative bacteria ratio. With time increasing, the ratio of high dosage straw return increased more significantly, which was conducive to long-term maintenance of ecosystem stability. High dosage of straw returning could significantly change the level of soil physical and chemical factors, which was an important reason for the differentiation of microbial community structure. The significant soil factors changed with the years of straw returning. In the first year, the significant factors were soil bulk density, pH, total nitrogen and C:N ratio (P<0.05), in the second year, the significant factors were soil water content, soil organic carbon, C:N ratio and soil bulk density (P<0.01), and soil organic carbon was the only significant factor in the third year (P<0.05). In conclusion, chopped straw with high dosage treatment had the most obvious difference between microbial community structure and CK, and had a stronger ability to regulate subsoil fungal community. It was more suitable for the improvement of the subsoil fertility of black soil and promoted the resource utilization of straw in Northeast China.

       

    /

    返回文章
    返回