Processing math: 100%
    • EI
    • CSA
    • CABI
    • 卓越期刊
    • CA
    • Scopus
    • CSCD
    • 核心期刊

长期秸秆深翻还田及养分管理对潮土有机碳矿化影响

聂浩亮, 杨军芳, 杨云马, 黄少辉, 张静, 王敬霞, 杨慧敏, 杨文方, 邢素丽, 贾良良

聂浩亮,杨军芳,杨云马,等. 长期秸秆深翻还田及养分管理对潮土有机碳矿化影响[J]. 农业工程学报,2024,40(18):70-80. DOI: 10.11975/j.issn.1002-6819.202406027
引用本文: 聂浩亮,杨军芳,杨云马,等. 长期秸秆深翻还田及养分管理对潮土有机碳矿化影响[J]. 农业工程学报,2024,40(18):70-80. DOI: 10.11975/j.issn.1002-6819.202406027
NIE Haoliang, YANG Junfang, YANG Yunma, et al. Effects of long-term deep tillage, straw returning and nutrient management on organic carbon mineralization of fluvo-aquic soil[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2024, 40(18): 70-80. DOI: 10.11975/j.issn.1002-6819.202406027
Citation: NIE Haoliang, YANG Junfang, YANG Yunma, et al. Effects of long-term deep tillage, straw returning and nutrient management on organic carbon mineralization of fluvo-aquic soil[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2024, 40(18): 70-80. DOI: 10.11975/j.issn.1002-6819.202406027

长期秸秆深翻还田及养分管理对潮土有机碳矿化影响

基金项目: 国家十四五重点研发计划项目(2021YFD19010005);河北省农林科学院科技创新专项(2022KJCXZX-ZHS-4)
详细信息
    作者简介:

    聂浩亮,研究实习员,研究方向为土壤改良与地力提升。Email:nie301064002@163.com

    通讯作者:

    贾良良,博士,研究员,研究方向为农田养分管理。Email:jiall990@126.com

  • 中图分类号: S155.4

Effects of long-term deep tillage, straw returning and nutrient management on organic carbon mineralization of fluvo-aquic soil

  • 摘要:

    为了明确耕作方式与养分管理对华北潮土土壤有机碳矿化的影响。基于连续15 a(2007—2022年)耕作与养分管理模式长期定位试验开展研究,长期定位试验分为农民习惯耕作管理模式(秸秆不还田+浅旋耕RP-S,rotate plow without straw return)和高产耕作管理模式(秸秆还田+深翻耕DP+S,deep plow with straw return)2个主处理,以及对照施肥(CK)、农民习惯施肥(CON)和优化施肥(OPT)3个副处理,共计6个处理。于2022年10月,采集表层(0~20 cm)土壤样品,分析土壤有机碳及活性碳组分含量与土壤碳库管理指数,并采用室内培养法,测定土壤有机碳矿化速率,利用一级动力学方程拟合土壤有机碳潜在可矿化量和碳半周期,应用结构方程模型揭示长期不同耕作模式与养分管理措施下,土壤有机碳的周转规律。多年试验数据得出,在RP-S条件下,C/N(SOC and TN ratio)总体呈逐渐下降趋势,在DP+S条件下,C/N总体呈先降后增趋势。秸秆还田+深翻耕处理显著提高了土壤活性有机碳组分含量(P<0.05),且碳库管理指数(CPMI, carbon pool management index)提升显著(P<0.05)。与农民习惯施肥相比,优化施肥可以显著提高土壤有机碳含量12.35%。在DP+S条件下,优化施肥显著提高了土壤易氧化有机碳(ROC,readily oxiedozable carbon)与CPMI。各处理土壤有机碳矿化速率均在1 d达到最大,而后1~10 d迅速下降,10 d后缓慢下降直至稳定,有机碳矿化速率随时间呈对数函数型变化,不同处理土壤有机碳矿化速率均符合一级动力学模型。秸秆还田+深翻耕显著提高了累积矿化率(潜在可矿化量与土壤有机碳的比值)23.59%,而优化施肥可以显著降低累积矿化率22.12%。土壤有机碳矿化累积量(Ct)与土壤有机碳(SOC,soil organic carbon)、土壤活性碳组分和土壤碳库管理指数均呈极显著正相关关系(P<0.01),与土壤潜在可矿化有机碳量(C0)呈显著正相关关系(P<0.05),结构方程模型表明,耕作管理、微生物碳(MBC,microbial biomass carbon)和ROC是影响土壤有机碳周转能力和固碳能力的直接因素,耕作与施肥管理可通过对土壤有机碳及活性碳组分的影响,间接影响土壤有机碳周转能力,进而影响土壤固碳能力。长期秸秆深翻耕还田结合优化施肥有利于提高土壤固碳能力,促进农田资源的增碳及可持续利用。

    Abstract:

    Soil organic carbon (SOC) mineralization is closely related to the terrestrial ecosystem carbon cycle and global climate change. Reasonable tillage and nutrient management can be adopted to improve the carbon accumulation and sequestration potential in soil. It is urgent to explore the relationship between tillage-nutrient management and SOC stability in the process of soil biochemistry, within the context of carbon sequestration and emission reduction. Therefore, this study aims to clarify the effects of tillage and nutrient management on SOC mineralization in fluvo-aquic soil of North China. A 15-year long-term positioning experiment was carried out on the tillage and nutrient management (2007-2022). Two main treatments were set: rotate plow without straw return (RP-S), and deep plow with straw return (DP+S). Three secondary treatments were set: controlled fertilization (CK), Conventional fertilization (CON), and Optimized fertilization (OPT), with a total of six treatments. Soil samples were collected at 0-20 cm depth in October 2022. Some parameters were measured, including the contents of SOC and activated carbon components, as well as the carbon pool management index. SOC mineralization rate was determined by the incubation method. A first-order kinetic model was used to calculate the potential mineralization and turnover rates. The structural equation model was fitted to reveal the turnover and sequestration of SOC under different tillage and nutrient management. The experimental results show that the C/N (SOC and TN ratio) generally shared a decreasing trend under the condition of RP-S, while the C/N generally shared an increasing first and then decreased trend under the condition of DP+S. Compared with the RP-S, DP+S treatments increased the contents of activated carbon components in soil, and the carbon pool management index (CPMI) increased significantly. Compared with CON, OPT significantly increased the content of SOC, with incremental rates of 12.35%. OPT significantly increased the readily oxidizable carbon (ROC) and CPMI with the condition of DP+S. SOC mineralization rates were the highest in the 1 d and then decreased rapidly. After 10 d incubation, SOC mineralization rates decreased slowdown until it stabilized. The SOC mineralization rate was in agreement with the logarithmic function. Nutrient management enhanced the mineralization rates of SOC in the fluvo-aquic soils in the following order: OPT, CON, CK. SOC mineralization rates in all treatments were consistent with the first-order kinetic model. DP+S significantly increased the cumulative mineralization rate (value of C0/SOC) by 23.59% (C0 is potential mineralizable organic carbon content in soil), while the OPT significantly reduced the value of C0/SOC by 22.12%. The accumulative mineralization of SOC (Ct is accumulation of soil organic carbon mineralization during cultivation time t) was significantly and positively correlated with the SOC, activated carbon components, and soil carbon pool management index (P<0.01), both of which were significantly and positively correlated with Potential mineralizable of SOC (C0) in the fluvo-aquic soils (P<0.05). Tillage management, microbial biomass carbon (MBC), and ROC were the direct factors of SOC mineralization and sequestration potential in soil. Tillage and fertilization management dominated the SOC mineralization by the contents of SOC and activated carbon components, then impacting soil carbon sequestration potential. According to the SOC accumulation content, the direct positive impact of long-term deep plow with straw return treatment on soil carbon sequestration potential can be fully counteracted by the indirect negative effect of the increase in SOC and activated carbon components on soil carbon sequestration potential. In conclusion, Long-term DP+S with OPT significantly improved the stability of soil structure and the SOC sequestration potential. Optimal fertilization reduced the cumulative SOC mineralization rate of soil and then enhanced the SOC accumulation and sustainable utilization of farmland resources. The finding can also provide ideal farmland management to optimize the combination of tillage and fertilization in fluvo-aquic soil of North China.

  • 生物炭是由生物质材料在完全或部分缺氧条件下,经过一定温度热解产生的难溶且稳定的富碳固体材料 [1]。生物炭表面含有丰富的含氧活性官能团、多孔结构、阳离子交换量、芳香性结构等使其对重金属具有较好的固持作用,进而在重金属污染环境修复中具有良好的应用前景[2-5]。热解温度对生物炭表面特征及吸附重金属离子的性能有重要影响[6-7],实际生产中生物炭热解制备方法有慢速热解法、快速热解法、气化法,目前较常用的生产模式为采用氮气做保护气的高温慢速热解法,但制备过程中保持高温热解(400~900 ℃)需消耗大量电力、燃气等能源且易产生温室气体,存在成本高、产率低等问题[8],在一定程度上限制了生物炭的推广与应用。因此,为了弥补高温热解技术的不足,低温限氧(200~400 ℃)热解制炭技术在节能减排的市场需求下应运而生。因热解过程中气体、温度等反应参数影响生物炭的表面结构及性能,与结构稳定、孔隙大、芳香性强[9]的高温生物炭相比,低温生物炭产率更高、结构复杂、具有更多的酸性基团,能为阳离子污染物提供更多的活性离子吸附位点[10],可弥补高温生物炭生产能耗大、碱性强、活性基团少[11]等不足,被逐渐应用到重金属稳定和修复领域。

    生物炭的环境应用过程会伴随着氧化作用、温度和湿度差异、光照等因素变化,导致比表面积、官能团含量、表面结构等发生改变,并逐渐稳定,即为老化。虽然原位监测可以为生物炭在自然环境中的时间演化提供直接证据,然而由于生物炭在环境中自然老化是一个长期过程,无法短时间预期其效果和化学特征变化。因此,采用人工模拟老化的方法代替自然老化,从而缩短研究时间,预测生物炭在自然环境关键因素影响下几百年至数千年老化后的特性,为生物炭的长期环境应用提供参考。人工老化方法包括物理老化(冻融、干湿循环)、化学老化(化学氧化、有机酸诱导老化、光催化氧化)和生物老化(堆肥和厌氧发酵)。不同老化过程会引起生物炭对污染物吸附量的变化[12-13],WANG等[14]发现用过氧化氢氧化玉米秸秆生物炭后,由于表面络合作用使生物炭对Pb2+、Cd2+的吸附量增加;MENG等[15]发现稻草生物炭经过干湿交替和冻融循环处理后对Cd的吸附量增加。多项研究均说明了老化过程的复杂性,且单一的人工老化方法只能为生物炭特性的变化提供有限的理论支撑,缺少不同老化方式的影响及差异对比,因此须综合比较多种人工老化技术对生物炭性能的影响。而且,关于老化所引起的生物炭特性变化研究常以相似制备条件下获得的生物炭为研究对象,对不同制备条件下所获得的生物炭老化特征变化及其对金属阳离子的吸附性能影响尚未见明确分析。

    基于此,本文以不同温度(200 ℃、500 ℃)、不同气氛(O2、N2)制备的小麦秸秆生物炭为研究对象,以重金属Cd2+为目标吸附离子,应用化学氧化、干湿交替、紫外光照3种老化方法代表自然界中最常见的氧气分子、降雨、光照对生物炭进行老化处理,模拟其在自然环境中经历的环境老化过程,通过扫描电镜(scanning electron micrograph,SEM)、比表面积分析(specific surface area analysis,SSA)、傅里叶红外光谱分析(Fourier transform infrared spectroscopy,FTIR)、热重分析(thermogravimetric analysis ,TG)等方法对老化生物炭的理化性质及重金属吸附能力变化进行详细解析,以阐明不同老化处理对两种生物炭表面结构、官能团含量、热稳定性和重金属吸附能力的影响,为推演自然环境下生物炭的老化作用对重金属稳定性的贡献及生物炭在自然环境中的长期应用提供理论指导。

    200 ℃的小麦秸秆生物炭制备以小麦秸秆为原料,自然晾干并粉碎后装进自制旋转炉内,在200 mL/min的普通氧气流量下,用3×300 W红外石英管加热至200 ℃,恒温持续3 h后停止加热,降温后关闭通气装置自然冷却至室温,获得低温生物炭。

    500 ℃的小麦秸秆生物炭以小麦秸秆为原料,晾干、粉碎后装填到马弗炉中进行压实、充入氮气作为保护气后闭合设备, 红外石英管加热至500 ℃热解6 h后降至室温取出,获得高温生物炭。

    本文中所有生物炭均过60目(0.25 mm)筛,保证所有处理生物炭颗粒均匀一致。

    称取一定量的低温生物炭、高温生物炭置于锥形瓶中,按照固液比1:10加入15%的H2O2溶液,80 ℃水浴加热6 h后将样品离心、过滤并用超纯水洗涤 2~3次。于105 ℃下烘干、研磨过60目(0.25 mm)筛后获得氧化老化低温生物炭、氧化老化高温生物炭。

    将低温生物炭、高温生物炭在 25 ℃饱和水状态下培养10 h,于105 ℃快速烘干2 h,进一步在25 ℃下干燥器内放置12 h后对干燥样品重新补加去离子水至初始饱和状态,记为 1 轮干湿交替,历时24 h。干湿交替过程在恒温培养箱25 ℃下进行,保持相同的培养条件。14轮(历时14 d)干湿交替结束后取样[16],研磨过筛后获得干湿交替老化低温生物炭、干湿交替老化高温生物炭。

    将低温生物炭、高温生物炭均匀平铺于玻璃培养皿中,放置于紫外灯管下(功率40 W、波长340 nm、辐照范围0.99 W/m2)10 cm处进行光氧化老化,每天采取光照12 h黑暗12 h的间歇式光照,老化培养环境条件为25 ℃,湿度60%,辐照20 d后[16]取样并干燥后获得紫外光照老化低温生物炭、紫外光照老化高温生物炭。

    称取0.03 g过筛的生物炭样品于50 mL聚乙烯离心管中,加入30 mL浓度为 224 mg/L的氯化镉溶液于上述离心管。在180 r/min、25 ℃震荡24 h后以4000 r/min的转速离心10 min后过滤,使用火焰原子吸收分光光度计测定滤液中剩余Cd2+浓度计算生物炭对Cd2+的单位吸附量。生物炭对Cd2+的吸附量采用质量平衡方程进行计算:

    q=[(C0Ct)V]/m (1)

    式中q为生物炭单位吸附量,mg/g;C0Ct分别为吸附前及吸附24 h后溶液中Cd2+的质量浓度,mg/L;V 为溶液体积,L;m 为生物炭用量,g。

    利用扫描电镜(荷兰飞纳,Phenom Pro)观察生物炭表面形貌特征变化;利用比表面积及孔隙测定仪(中国金埃谱,V-Sorb 2800P)测定生物炭比表面积和孔隙结构;利用傅里叶变换红外光谱仪(美国赛默飞,Nicolet iS10)扫描并分析生物炭表面官能团,扫描范围为 500~4000 cm−1;利用pH计(上海梅特勒-托利多,FE20)测定生物炭浸提液pH值;利用自动电位滴定仪(上海雷磁,ZDJ-4B)测定生物炭表面酸碱基团含量;利用原子吸收分光光度计(日本岛津,AA-6880)测定吸附后滤液中Cd2+离子浓度。

    使用Microsoft Excel 2019和OMNIC 8软件进行数据处理和统计分析,利用SPSS 25软件进行显著性分析,利用Origin 2021完成图表绘制。

    生物炭老化前后的扫描电镜图像如图1所示。

    图  1  生物炭老化前后的扫描电镜图
    注:LBC、OLBC、WLBC、ULBC分别为低温、氧化老化低温、干湿交替老化低温、紫外光照老化低温生物炭;HBC、OHBC、WHBC、UHBC分别为高温、氧化老化高温、干湿交替老化高温、紫外光照老化高温生物炭。下同。
    Figure  1.  Scanning electron micrograph of original and aged biochars
    Note: LBC, OLBC, WLBC, ULBC are low-temperature biochar, chemical oxidative aging low-temperature biochar, dry-wet cycles aging low-temperature biochar, and the UV light oxidative low-temperature biochar; HBC, OHBC, WHBC, UHBC are high-temperature biochar, chemical oxidative aging high-temperature biochar, dry-wet cycles aging high-temperature biochar, and the UV light oxidative high-temperature biochar. Same below.

    LBC因低温热解时生物炭炭化不充分,保留了小麦秸秆纤维管状结构,孔隙结构明显;随着热解温度升高,生物炭炭化程度增强使HBC结构破碎、表面粗糙,高温热解形成的灰分富集在表面从而形成更丰富的孔隙结构。

    低温和高温生物炭化学氧化后仍保留着老化前的原始结构并出现了大量小孔隙,说明H2O2的强氧化作用不会破坏生物炭整体结构,但使生物炭表面结构发生分裂。干湿交替处理后生物炭表面片层结构破碎程度加重,与TAN等 [17]的研究结果一致,整体结构经过干湿交替后表面松散从而形成了更多孔隙;经过紫外光照氧化后两种生物炭表面产生细小裂纹并且孔隙结构变得光滑清晰。3种老化方式相比,氧化作用对生物炭表面孔隙结构的影响更明显,并且3种老化方法均未破坏生物炭的原始结构。

    两种生物炭在老化前后的比表面积及孔径D分析如表1图2所示。生物炭的孔隙结构可分为超微孔(D<2 nm)、微孔(2≤D<10 nm)、小孔(10≤D<50 nm)、中孔(50≤D<100 nm)及大孔(D≥100 nm)。低温生物炭孔隙整体分布在0~2.5 nm,主要为微孔结构,而高温生物炭主要为小孔结构(10~20 nm)。LBC、HBC的比表面积分别为0.78、11.43 m2/g,可见高温热解有利于提高生物炭比表面积。分析原因为随着热解温度的升高,生物质内高聚物发生解聚和脱氢反应,不稳定易挥发组分逐渐消失,不稳定碳结构逐渐向片状晶体结构转变,形成更小的孔隙从而增大生物炭的比表面积[18]

    表  1  生物炭老化前后的比表面积变化
    Table  1.  Changes in specific surface area of original and aged biochars
    处理Treatment比表面积Specific surface area/ (m2·g−1)
    LBC0.78
    OLBC7.65
    WLBC1.44
    ULBC0.15
    HBC11.43
    OHBC15.70
    WHBC8.09
    UHBC1.80
    下载: 导出CSV 
    | 显示表格

    无论低温生物炭、高温生物炭,经H2O2强氧化作用后材料被破坏,颗粒尺寸发生变化。同时,H2O2会溶解生物炭上的部分不稳定碳,并从孔隙中去除矿物质,从而增加比表面积。因此,经化学氧化老化后OLBC、OHBC的比表面积均较初始生物炭增大,比老化前分别提高了8.81和0.37倍。干湿交替老化过程使WLBC比表面积由0.78 m2/g增加到1.44 m2/g,低温生物炭具有较高的活性有机质和较低的固定碳含量,碳骨架经过老化后呈现较高的孔隙度[19]。经干湿交替老化后WHBC比表面积较HBC降低29.22%,水分的交替变化使孔隙结构被溶解性有机物堵塞,无机矿物的溶解和再沉淀也是造成孔隙堵塞的重要原因[20]。紫外光照能够破坏生物炭的孔隙结构,因此ULBC、UHBC的比表面积比老化前分别下降了80.77%、84.25%,而李桥等[21]的研究表明紫外辐照后椰壳生物炭的比表面积增幅为20.50%~41.80%,这可能与生物炭原材料及紫外光照方式不同有关。此外,孔径分析结果表明(图2),老化作用使低温生物炭的小孔数量增多,OLBC、WLBC、ULBC的孔径为2.50~26.80 nm;而H2O2强氧化作用使OHBC的微孔(1.32~9.50 nm)数量增加,OHBC、WHBC、UHBC的孔径为18.30~41.00 nm小孔结构,主要由于碳损失和碳架断裂收缩形成。综上,与生物炭材料干湿交替的水分变化影响相比,氧化老化对生物炭孔隙结构的破坏作用更明显,并且由于H2O2和紫外线两种氧化剂的性质不同导致生物炭比表面积增大或减小,与SEM观察到的结果一致。

    图  2  生物炭老化前后的孔径分析
    Figure  2.  Pore size analysis of original and aged biochars

    生物炭老化前后的红外光谱信息如图3所示。生物炭由不稳定碳、稳定碳和无机组分构成,其中不稳定碳和无机组分受热解温度影响较大,红外光谱中出现的3720、3633 cm−1左右处的峰属于酚羟基,随着生物炭裂解温度升高,LBC 3720 cm−1处酚羟基伸缩振动移位到HBC的3633 cm−1左右,是由于纤维素类物质随温度升高逐渐碳化,其所含有的-OH键发生缔合或者脱落导致 [22]。经不同老化方式处理后,不同热解温度下制备生物炭的特征峰强度变化差异明显。3351、3348 cm−1处的峰属于分子间缔合的氢键醇、酚的羟基伸缩振动峰,OLBC、ULBC及所有老化高温生物炭中该峰均消失。1778~1652 cm−1波段的峰属于C=O伸缩振动,是羧酸基团中酯键的特征峰,高温炭的C=O峰经过3种老化后均消失;1439、1446 cm−1处的峰是典型芳香碳,反映了生物炭具有的芳香化结构,老化导致高温炭的芳香碳峰强减弱甚至消失;1216、1218 cm−1处的峰为C-O,低温炭经过紫外老化该峰波段变宽,而3种老化高温炭中该峰均消失;1050~1150 cm−1处为脂肪族C-O-C键,为LBC经过化学氧化和干湿交替老化后的新衍生峰。LBC中926 cm−1处的-OH峰经老化后脱落。500~900 cm−1之间的吡啶、吲哚等芳香化和杂环化合物振动峰明显,表明生物炭具有高度芳香化和杂环化的结构,这为生物炭发生阳离子−π键吸附作用提供了基础[23]

    图  3  生物炭老化前后的红外光谱
    Figure  3.  Fourier transform infrared spectroscopy of original and aged biochars

    生物炭老化前后的官能团数量变化如表2所示,结合红外光谱图对官能团变化进行分析。综合分析,因低温生物炭在通氧条件下热解,形成更多的含氧官能团,低温生物炭的酸性基团数量较多,高温的热解温度促进秸秆的炭化程度,故高温生物炭表面所含官能团种类及数量较低温生物炭减少[24]

    表  2  生物炭的各基团含量变化
    Table  2.  Functional groups amount of original and aged biochars
    处理
    Treatment
    碱性基团
    Basic
    groups/
    (mmol·g−1)
    酸性基团
    Acidic
    group /
    (mmol·g−1)
    羧基
    Carboxyl /
    (mmol·g−1)
    内酯基
    Lactone group /
    (mmol·g−1)
    酚羟基
    Phenolic hydroxyl /
    (mmol·g−1)
    LBC0.02±0.01 c3.77±0.06 b0.67±0.03 b0.97±0.06 b2.13±0.03 a
    OLBC0.01±0.01 d4.16±0.12 a1.74±0.05 a2.16±0.10 a0.26±0.03 d
    WLBC0.31±0.01 a2.13±0.06 d0.54±0.02 c0.77±0.01 c0.82±0.01 c
    ULBC0.13±0.01 b3.12±0.02 c0.61±0.02 c0.96±0.02 b1.55±0.04 b
    HBC1.26±0.04 a1.05±0.04 b0.05±0.00 d0.03±0.01 d0.97±0.03 a
    OHBC0.71±0.01 d1.52±0.02 a0.33±0.03 a0.29±0.04 a0.90±0.01 b
    WHBC0.84±0.02 b0.06±0.01 d0.14±0.00 c0.12±0.01 c/
    UHBC0.76±0.01 c0.28±0.03 c0.21±0.02 b0.21±0.00 b/
    注:“/”代表未检出。不同小写字母分别表示高温或低温生物炭组别中4个处理间差异显著(P<0.05)。下同。
    Note: “/” means not detected. The different lowercase letters indicate significant differences between four treatments in high-temperature or low-temperature biochar groups (P<0.05). Same below.
    下载: 导出CSV 
    | 显示表格

    经化学氧化处理后,低温生物炭和高温生物炭碱性基团数量显著降低(P<0.05),酸性基团数量增多,OLBC、OHBC的碱性基团数量较老化前降幅分别为87.78%、43.93%;酸性基团数量分别显著增长了10.53%、44.05%,其中羧基、内酯基的数量增多。MIA等[25]用H2O2处理模拟长期氧化对生物炭的影响,也发现生物炭表面含氧官能团增多,其研究结果与本文一致。经过干湿交替老化作用和紫外光照老化作用后,低温生物炭的碱性基团数量显著增多,酸性基团总量降幅为17.29%~43.36%,羧基及内酯基数量也显著减少;而高温生物炭碱性基团、酸性基团数量均减少,其中含氧官能团数量降幅为73.30%~94.68%。3种老化方式相比,化学氧化老化对生物炭表面含氧官能团的影响较大。

    两种生物炭热重分析结果如图4所示。热重分析温度分为4个区间,其中20~210 ℃与水分蒸发有关, 211~420 ℃主要是碳水化合物的热解,421~570 ℃是芳香族化合物的热解, 571~800 ℃与生物炭中无机物的转化有关。

    图  4  生物炭老化前后的热重分析图
    Figure  4.  Thermogravimetric analysis chart of original and aged biochars

    对于原始及老化处理后的低温生物炭,由于纤维素、半纤维素大量分解和木质素软化及含氧官能团的热解,其质量损失主要在区域Ⅱ的290~325 ℃之间,这与FAN等[26]的研究结果一致。LBC、OLBC、WLBC、ULBC的质量损失分别为57.17%、60.69%、57.50%、57.12%。对不同老化方式对生物炭热稳定性影响分析,由于化学氧化过程中生物炭表面增加的含氧官能团易随热重分析温度升高而热解损失,造成化学氧化后生物炭的热稳定性明显降低,而干湿交替老化和紫外老化处理低温生物炭的热稳定性未发生明显改变。

    高温生物炭在热重升温过程中较稳定,最大质量损失主要在温度446~460和660~680 ℃之间,归因于芳香族化合物的热解以及无机矿物组分的转化和降解,HBC、OHBC、WHBC、UHBC的质量损失分别为8.19%、6.93%、5.87%、5.00%,3种老化处理均使高温炭热稳定性增强。

    LBC、HBC两种炭老化前后的pH值如表3所示。低温生物炭在通氧条件下热解,生物炭表面的酸性含氧官能团较多,导致其呈现酸性特征,pH值为4.65;而高温限氧条件下热解的生物炭,较高的生产温度导致生物炭的酸性官能团(如羧基和酚羟基)分解,并形成一些碱性矿物(如K2O)[27],获得碱性生物炭(pH值为9.05)。

    表  3  生物炭老化前后的pH值及Cd2+吸附量变化
    Table  3.  pH value and Cd2+ adsorption capacity of original and aged biochars
    处理
    Treatment
    pH值
    pH value
    吸附量
    Adsorption capacity/ (mg·g−1)
    LBC4.56±0.01 b3.49±0.32 c
    OLBC2.50±0.01 c20.92±0.23 a
    WLBC4.52±0.02 b4.73±0.57 c
    ULBC4.65±0.01 a18.71±0.15 b
    HBC9.05±0.09 c2.62±0.91 b
    OHBC7.44±0.01 d23.53±2.28 a
    WHBC9.88±0.02 b5.97±0.93 b
    UHBC9.99±0.02 a22.72±1.46 a
    下载: 导出CSV 
    | 显示表格

    分析3种老化方式对生物炭pH值影响发现,H2O2氧化可以降低生物炭的pH值,OLBC、OHBC的pH值较老化前分别降低了2.06、1.61,结合生物炭表面含氧官能团数量变化分析(表3),生物炭经H2O2老化过程中发生C-C、C-H键的氧化作用,促进C-O和C=O的生成,含氧酸性官能团数量分别提高了10.53%、44.05%,导致其pH值降低, HALE等[20]也认为老化生物炭表面生成的含氧官能团(-COOH和C=O)是其酸性增加主要原因。其次,生物炭表面芳香基团在H2O2作用下分解为低分子有机酸,增加生物炭表面酸性基团含量,降低生物炭的碱度[28]

    经过干湿交替老化,WLBC的pH值从老化前的4.56降低到4.52,WHBC从9.05升高到9.88,高温炭与低温炭的pH值呈现出相反的变化趋势,低温炭pH值降低可能是由于不稳定的有机碳在干湿交替过程中分解成低分子量有机酸,并且生物炭暴露在空气中可能吸附二氧化碳,形成新的碳酸盐,降低生物炭的碱度,如XU等[29]研究结果表明麦秸生物炭可吸附CO2诱导CaCO3转化为可溶性Ca(HCO3)2,显著增加可溶性无机碳,使pH值下降。对于高温生物炭,干湿交替老化处理过程中水分变化使其所含的一些无机金属离子(Al3+、Mg2+、Fe3+)与氢氧根结合形成沉淀导致pH值升高。

    生物炭表面经过紫外光照过程发生氧化反应,导致生物炭表面氧和水分的非生化吸附增加[17],故ULBC、UHBC的pH值较未老化处理前分别升高了0.09、0.94。除此之外,经紫外老化后生物炭表面酸碱基团数量变化也是造成pH值波动的原因之一。

    生物炭老化过程中其表面元素组成、含氧官能团以及形貌特征等均发生不同程度的改变,从而影响生物炭对重金属的吸附量。通过表3中生物炭老化前后对Cd2+的吸附量发现, LBC对Cd2+的吸附性能强于HBC,已有研究表明,生物炭对污染物的吸附机制随其热解温度变化而变化[30]。结合本研究中生物炭的理化性质分析,LBC表面丰富的羟基、羧基等含氧官能团与重金属阳离子的交换和络合反应构成了LBC的主要吸附机理;HBC呈碱性,并且其含有的无机组分如磷酸根、碳酸根等易与金属离子发生共沉淀作用,形成相对稳定的晶体或矿物晶体进而降低重金属离子的移动性,因此HBC对 Cd2+的主要吸附机制是矿物共沉淀、阳离子交换和阳离子−π键共同作用[29]

    3种老化作用均提高了两种生物炭的Cd2+吸附量,吸附量提高效果从高到低依次为化学氧化、紫外光照、干湿交替,并且化学氧化和紫外光照氧化可显著提高生物炭的吸附能力(P<0.05)。经过化学氧化作用,OLBC、OHBC的Cd2+吸附量分别增加498.95%、799.36%。分析原因为化学氧化后,OLBC、OHBC的比表面积分别扩大8.81、0.37倍,含氧官能团数量分别增长10.53%、44.05%,生物炭的比表面积增加和羧基、羟基等含氧官能团数量增多,促进生物炭表面芳香碳、羧基碳与π电子结合[31],为生物炭提供有效的 Cd2+结合位点。经过紫外光照老化ULBC、UHBC的Cd2+吸附量分别显著增长436.10%、768.43%,结合前文的研究结果,当暴露于紫外线辐射时,生物炭经历一系列的光氧化反应,吸附量增多更大程度上归因于化学吸附。经过干湿交替老化,WLBC、WHBC对Cd2+的吸附量分别增长35.53%、128.10%,低温生物炭吸附能力增强与干湿交替过程中孔隙增大以及吸附位点增多有关,孔隙分析结果表明WLBC与老化前的微孔结构相比其小孔结构增多,并且干湿交替过程中生物炭表面溶解有机或无机组分不断减少,释放了部分阳离子吸附位点,增加了吸附位点的可给性;而高温炭吸附量增多主要归因于干湿交替过程中生物炭表面盐基离子溶出后与Cd2+之间的离子交换作用。除含氧官能团、吸附位点变化及pH值的作用外,SEM结果(图1)表明经过3种老化作用的生物炭表面粗糙、结构破碎也有利于吸附固定Cd2+

    1)不同温度及气氛下制备的生物炭性质不同。低温生物炭含有更多的含氧官能团,而高温热解技术制备生物炭会促进生物炭孔隙结构的发育进而提高其比表面积。不同类型的生物炭经老化作用后表面形貌均发生破碎并导致孔隙结构发生相应变化。

    2)化学氧化使生物炭比表面积分别增加8.81和0.37倍,含氧官能团增幅为10.53%~44.05%;而干湿交替和紫外光照老化过程能够使生物炭表面酸性基团数量减少,含氧官能团数量降幅分别为43.36%~94.68%、17.29%~73.30%。

    3)老化处理增加了生物炭对Cd2+的吸附量,3种老化方法对生物炭吸附性能的提升作用从大到小依次为化学氧化、紫外光照、干湿交替。老化作用主要通过改变生物炭表面粗糙程度、吸附位点的数量以及与羟基、羧基等官能团的络合作用来显著改变生物炭对Cd2+吸附。

    4)3种老化方式相比,化学氧化对生物炭理化性质及Cd2+吸附能力的提升作用更明显,说明与其他因素相比,自然环境中的氧分子、根系分泌物等氧化作用对生物炭的改变作用更强。

  • 图  1   不同耕作及养分管理对土壤有机碳含量及活性碳组分的影响

    注:方差分析中,T表示耕作管理, C表示养分管理, T×C表示耕作管理与养分管理的交互作用;***、*和 ns 分别表示变量效应达到 0.001 、0.05显著水平和不显著。

    Figure  1.   Effects of tillage and nutrient management on organic carbon content and activated carbon components

    Note:In the ANOVA, T: tillage management, C: nutrient management, T×C: The interaction between tillage and nutrient management; ***, * and ns indicate the significant effect of variable at 0.001 level, 0.05 level, and no significant effect, respectively.

    图  2   不同耕作及养分管理对土壤有机碳矿化速率的动态变化

    Figure  2.   Dynamic changes of soil organic carbon(SOC) mineralization rate under tillage and nutrient management

    图  3   不同耕作及养分管理对土壤有机碳累积矿化量的动态变化

    Figure  3.   Dynamic changes of soil organic carbon(SOC) accumulative mineralization under tillage and nutrient management

    图  4   土壤有机碳周转与固碳能力结构方程模型

    注: TM为耕作管理; FM为施肥管理; 图中箭头上的数字为标准化路径系数。

    Figure  4.   Structural equation model of soil organic carbon decomposition and sequestration potential

    Note: TM, tillage management; FM, fertilizer management; The numbers on the arrows are significant standardized path coefficients.

    表  1   不同主处理的耕作管理模式

    Table  1   Tillage management in different main treatments

    管理模式
    Management
    小麦品种
    Wheat variety
    玉米品种
    Maize variety
    玉米定植密度
    Maize plantation density/(1000 株·hm−2)
    耕作模式
    Tillage method
    耕作深度
    Tillage depth/cm
    秸秆处理
    Straw treatment
    秸秆不还田+浅旋耕(DP+S) 石麦15 先玉335 75 深翻耕 30 秸秆还田
    秸秆还田+深翻耕(RP-S) 6172 郑单958 60 浅旋耕 15 秸秆不还田
    下载: 导出CSV

    表  2   不同副处理的养分管理模式

    Table  2   The nutrient management in different secondary treatments

    管理模式
    Management
    处理
    Treatment
    夏玉米Summer maize 冬小麦Winter wheat
    N/(kg·hm−2) 氮肥基追比
    BTRN
    P(P2O5)/
    (kg·hm−2)
    K(K2O)/
    (kg·hm−2)
    N/(kg·hm−2) 氮肥基追比
    BTRN
    P(P2O5)/
    (kg·hm−2)
    K(K2O)/
    (kg·hm−2)
    DP+S DCK 0 75 90 0 90 90
    DCON 250 9:16 60 90 300 1:1 75 90
    DOPT 300 1:2 75 90 225 1:2 90 90
    RP-S RCK 0 0 0 0 90 90
    RCON 250 9:16 0 0 300 1:1 120 90
    ROPT 180 1:2 0 0 180 1:2 90 90
    注:DCK为秸秆还田+深翻耕条件下不施肥; DCON为秸秆还田+深翻耕条件下农民习惯施肥; DOPT为秸秆还田+深翻耕条件下优化施肥; RCK为秸秆不还田+浅旋耕条件下不施肥; RCON为秸秆不还田+浅旋耕条件下农民习惯施肥; ROPT为秸秆不还田+浅旋耕条件下优化施肥;下同。
    Note: DCK, deep plow with straw return; DCON, deep plow with straw return; DOPT, deep plow with straw return; RCK, rotate plow without straw return; RCON, rotate plow without straw return; ROPT, rotate plow without straw return, BTRN, basal to topdressing ratio of Nitrogen fertilizer, the same below.
    下载: 导出CSV

    表  3   不同耕作及养分管理对土壤有机碳、全氮含量的多年变化

    Table  3   Multi-year changes of SOC and TN under tillage and nutrient management

    管理模式
    Management
    处理
    Treatment
    2008 2015 2022
    SOC/(g·kg−1) TN/(g·kg−1) C/N SOC/(g·kg−1) TN/(g·kg−1) C/N SOC/(g·kg−1) TN/(g·kg−1) C/N
    RP-S RCK 14.22bc 0.82c 17.35a 13.52c 0.88c 15.35a 12.91e 0.89c 14.51b
    RCON 13.50c 0.89bc 15.14c 13.85c 1.03b 13.44c 14.44 d 1.08b 13.38c
    ROPT 15.57a 1.03a 15.19c 15.56ab 1.05b 14.75b 16.19c 1.22a 13.31c
    DP+S DCK 12.54 d 0.77 d 16.18b 12.53 d 0.86c 14.62b 12.57e 0.85c 14.87b
    DCON 15.02ab 0.93b 16.08b 16.08a 1.20a 13.38c 18.11b 1.27a 14.31b
    DOPT 14.85ab 0.97ab 15.28c 15.74 ab 1.18a 13.31c 20.38a 1.31a 15.55a
    注:SOC为土壤有机碳含量; TN为土壤全氮含量; 不同小写字母表示不同处理差异显著(P<0.05)。下同。
    Note: SOC, soil organic carbon; TN, total nitrogen; Different lowercase letters indicate significant differences in different treatments (P<0.05). The same as below.
    下载: 导出CSV

    表  4   不同耕作及养分管理对土壤碳库管理指数的影响

    Table  4   Effects of cropping system of tillage and nutrient management on soil carbon pool management index

    管理模式
    Management
    处理
    Treatment
    碳库指数
    Carbon pool index
    (CPI)
    稳定态碳
    No activity organic carbon
    (NROC)
    碳库活度
    Carbon pool activity
    (CPA)
    碳库活度指数
    Carbon pool activity index
    (CPAI)
    碳库管理指数
    Carbon pool management index
    (CPMI)
    RP-SRCK1.00±0.00 de10.71±0.23 cd0.21±0.01 b1.00±0.00 b1.00±0.00 d
    RCON1.12±0.02 d11.78±0.39 c0.23±0.01 b1.10±0.04 b1.23±0.06 c
    ROPT1.26±0.02 c13.33±0.42 b0.22±0.00 b1.05±0.04 b1.31±0.03 c
    DP+SDCK0.97±0.01 e10.36±0.21 d0.22±0.01 b1.05±0.09 b1.02±0.08 d
    DCON1.41±0.06 b13.91±0.52 b0.31±0.02 a1.48±0.09 a2.06±0.05 b
    DOPT1.58±0.07 a15.73±0.42 a0.30±0.00 a1.43±0.05 a2.27±0.11 a
    下载: 导出CSV

    表  5   长期不同耕作方式及养分管理下土壤有机碳矿化的动力学参数

    Table  5   Dynamic parameters of soil organic carbon mineralization under long-term tillage method and fertilizer management

    处理
    Treatment
    潜在可矿化量
    Potential mineralizable C0/(mg·kg−1)
    周转常数
    Constant of turnover rate k/d−1
    决定系数
    Determination coefficient R2
    碳半周期
    Half turnover period of SOC pool T1/2/d
    RCK 380.14±14.72 e 0.020±0.000 b 0.9967** 29.48±0.81 d
    RCON 852.43±53.54 c 0.014±0.003 cd 0.9984** 47.97±2.60 b
    ROPT 732.69±14.32 d 0.020±0.003 b 0.9957** 35.01±0.28 c
    DCK 795.47±11.29 cd 0.013±0.001 d 0.9957** 55.53±1.71 a
    DCON 1 306.40±32.59 a 0.016±0.000 c 0.9948** 44.24±0.81 b
    DOPT 1 156.89±85.47 b 0.023±0.001 a 0.9909** 29.72±0.60 d
    注:C0为土壤潜在可矿化量;k为土壤周转常数;T1/2为土壤碳半周期;下同。
    Note: C0, Potential mineralizable SOC content; k, Constant of turnover rate; T1/2, Half turnover period of SOC pool; The same as below.
    下载: 导出CSV

    表  6   培养46 d土壤有机碳累积矿化率

    Table  6   Cumulative mineralization rate of SOC during 46 days’ incubation

    处理
    Treatment
    秸秆不还田+浅旋耕
    Rotate plow without straw return/%
    秸秆还田+深翻耕
    Deep plow with straw return/%
    CK 2.94±0.001 c 6.33±0.000 b
    CON 5.90±0.002 a 7.21±0.001 a
    OPT 4.53±0.001 b 5.68±0.002 c
    下载: 导出CSV

    表  7   土壤有机碳矿化参数与土壤活性碳含量间相关性分析

    Table  7   Correlation analysis of soil organic carbon mineralization parameters and labile carbon contents

    指标 Index C0 k T1/2 Ct C0/SOC
    SOC 0.785 0.580 −0.428 0.967** 0.370
    MBC 0.857* 0.485 −0.328 0.993** 0.479
    DOC 0.852* 0.461 −0.307 0.977** 0.482
    ROC 0.859* 0.472 −0.326 0.989** 0.482
    CPI 0.785 0.579 −0.429 0.966** 0.370
    CPAI 0.920** 0.252 −0.126 0.948** 0.632
    CPMI 0.867* 0.454 −0.307 0.988** 0.498
    C0 1 −0.032 0.198 0.905* 0.860*
    k −0.032 1 −0.956** 0.394 −0.718*
    T1/2 0.198 −0.956** 1 −0.218 0.870*
    注: *和**分别代表P<0.05和P<0.01水平显著。
    Note: * and ** represent significances at the P<0.05 and P<0.01 levels, respectively.
    下载: 导出CSV
  • [1]

    LAL R. Soil carbon sequestration impacts on global climate change and food security[J]. Science, 2004, 304(5677): 1623-1627. doi: 10.1126/science.1097396

    [2] 袁红朝,秦红灵,刘守龙,等. 固碳微生物分子生态学研究[J]. 中国农业科学,2011,44(14):2951-2958.

    YUAN Hongchao, QIN Hongling, LIU Shoulong, et al. Advances in research of molecular ecology of carbon fixation microorganism[J]. Scientia Agricultura Sinica, 2011, 44(14): 2951-2958. (in Chinese with English abstract)

    [3] 徐明岗,张旭博,孙楠,等. 农田土壤固碳与增产协同效应研究进展[J]. 植物营养与肥料学报,2017,23(6):1441-1449.

    XU Minggang, ZHANG Xubo, SUN Nan, et al. Advance in research of synergistic effects of soil carbon sequestration on crop yields improvement in croplands[J]. Journal of Plant Nutrition and Fertilizers, 2017, 23(6): 1441-1449. (in Chinese with English abstract)

    [4] 吕真真,刘秀梅,仲金凤,等. 长期施肥对红壤性水稻土有机碳矿化的影响[J]. 中国农业科学,2019,52(15):2636-2645.

    LV Zhenzhen, LIU Xiumei, ZHONG Jinfeng, et al. Effects of long-term fertilization on mineralization of soil organic carbon in red paddy soil[J]. Scientia Agricultura Sinica, 2019, 52(15): 2636-2645. (in Chinese with English abstract)

    [5] 王永慧,杨殿林,红雨,等. 不同地力玉米田土壤有机碳矿化特征[J]. 农业环境科学学报,2019,38(3):590-599. doi: 10.11654/jaes.2018-1032

    WANG Yonghui, YANG Dianlin, HONG Yu, et al. Characteristics of soil organic carbon mineralization in the soil of maize fields with different soil fertility[J]. Journal of Agro-Environment Science, 2019, 38(3): 590-599. (in Chinese with English abstract) doi: 10.11654/jaes.2018-1032

    [6]

    ZHAO S, LI K, ZHAO W, et al. Changes in soil microbial community, enzyme activities and organic matter fractions under long-term straw return in north-central China[J]. Agriculture, Ecosystems &Environment, 2016, 216: 82-88.

    [7] 张雅蓉,刘彦伶,黄兴成,等. 不同有机肥施用模式下黄壤稻田根际和非根际土壤有机碳的矿化特征[J]. 植物营养与肥料学报,2023,29(3):449-458. doi: 10.11674/zwyf.2022382

    ZHANG Yarong, LIU Yanling, HUANG Xingcheng, et al. Organic carbon mineralization characteristics in rhizosphere and bulk soil of rice under organic fertilization modes in yellow paddy fields[J]. Journal of Plant Nutrition and Fertilizers, 2023, 29(3): 449-458. (in Chinese with English abstract) doi: 10.11674/zwyf.2022382

    [8] 白银萍,海江波,杨刚,等. 稻田土壤呼吸及酶活性对不同秸秆还田方式的响应[J]. 应用与环境生物学报,2017,23(1):28-32.

    BAI Yinping, HAI Jiangbo, YANG Gang, et al. Effect of the straw returning pattern on soil respiration and enzyme activities[J]. Chinese Journal of Applied and Environmental Biology, 2017, 23(1): 28-32. (in Chinese with English abstract)

    [9] 王旭东,庄俊杰,刘冰洋,等. 秸秆还田条件下中国农田土壤有机碳含量变化及其影响因素的Meta分析[J]. 中国农业大学学报,2020,25(8):12-24.

    WANG Xudong, ZHUANG Junjie, LIU Bingyang, et al. Residue returning induced changes in soil organic carbon and the influential factors in China's croplands: a meta-analysis[J]. Journal of China Agricultural University, 2020, 25(8): 12-24. (in Chinese with English abstract)

    [10]

    LIU C, LU M, CUI J, et al. Effects of straw carbon input on carbon dynamics in agricultural soils: A meta-analysis[J]. Global Change Biology, 2014, 20(5): 1366-1381. doi: 10.1111/gcb.12517

    [11] 王永慧,轩清霞,王丽丽,等. 不同耕作方式对土壤有机碳矿化及酶活性影响研究[J]. 土壤通报,2020,51(4):876-884.

    WANG Yonghui, XUAN Qingxia, Wang Lili, et al. Soil organic carbon mineralization and soil enzyme activities under different tillage methods[J]. Chinese Journal of Soil Science, 2020, 51(4): 876-884. (in Chinese with English abstract)

    [12]

    CUZMAN J, AL-KAISI M, PARKIN T. Greenhouse gas emissions dynamics as influenced by corn residue removal in continuous corn system[J]. Soil Science Society of American, 2015, 79(2): 612-625. doi: 10.2136/sssaj2014.07.0298

    [13] 梁尧,蔡红光,杨丽,等. 玉米秸秆覆盖与深翻两种还田方式对黑土有机碳固持的影响[J]. 农业工程学报,2021,37(1):133-140. doi: 10.11975/j.issn.1002-6819.2021.01.017

    LIANG Yao, CAI Hongguang, YANG Li, et al. Effects of maize stovers returning by mulching or deep tillage on soil organic carbon sequestration in Mollisol[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2021, 37(1): 133-140. (in Chinese with English abstract) doi: 10.11975/j.issn.1002-6819.2021.01.017

    [14]

    PAUSTIAN K, LEHMANN J, OGLE S, et al. Climate-smart soils[J]. Nature, 2016, 532(7597): 49. doi: 10.1038/nature17174

    [15] 王朔林,杨艳菊,王改兰,等. 长期施肥对栗褐土有机碳矿化的影响[J]. 植物营养与肥料学报,2016,22(5):1278-1285. doi: 10.11674/zwyf.15309

    WANG Shuolin, YANG Yanju, WANG Gailan, et al. Effect of long-term fertilization on organic carbon mineralization of cinnamon soil[J]. Journal of Plant Nutrition and Fertilizers, 2016, 22(5): 1278-1285. (in Chinese with English abstract) doi: 10.11674/zwyf.15309

    [16]

    HU Q, LIU T, DING H. Application rates of nitrogen fertilizers change the pattern of soil organic carbon fractions in a rice-wheat rotation system in China[J]. Agriculture, Ecosystems & Environment, 2022(338): 108081.

    [17] 戴相林,刘雅辉,孙建平,等. 秸秆还田和氮肥减施对滨海盐渍土稻田温室气体排放及氮肥利用率的影响[J]. 应用与环境生物学报,2023,29(4):994-1005.

    DAI Xianglin, LIU Yahui, SUN Jianping, et al. Combined effects of straw return and reduced nitrogen fertilizer application on greenhouse gas emissions and nitrogen use efficiency in a coastal saline paddy field[J]. Chinese Journal of Applied & Environmental Biology, 2023, 29(4): 994-1005. (in Chinese with English abstract)

    [18] 郭戎博,李国栋,潘梦雨,等. 秸秆还田与施氮对耕层土壤有机碳储量、组分和团聚体的影响[J]. 中国农业科学,2023,56(20):4035-4048. doi: 10.3864/j.issn.0578-1752.2023.20.009

    GUO Rongbo, LI Guodong, PAN Mengyu, et al. Effects of long-term straw return and nitrogen application rate on organic carbon storage, components and aggregates in cultivated layers[J]. Scientia Agricultura Sinica, 2023, 56(20): 4035-4048. (in Chinese with English abstract) doi: 10.3864/j.issn.0578-1752.2023.20.009

    [19] 薛旭杰,康晓晗,石小霞,等. 长期施肥和秸秆还田对设施蔬菜土壤有机碳的影响[J]. 农业工程学报,2022,38(增刊):98-105. doi: 10.11975/j.issn.1002-6819.2022.z.011

    XUE Xujie, KANG Xiaohan, SHI Xiaoxia, et al. Effects of long-term fertilization and straw returning on soil organic carbon in plastic-shed vegetable production[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2022, 38(增刊): 98-105. (in Chinese with English abstract) doi: 10.11975/j.issn.1002-6819.2022.z.011

    [20] 黄少辉,杨军芳,杨云马,等. 长期不同施肥措施下华北潮土土壤有机碳的固存变化[J]. 华北农学报,2019,34(S1):168-175. doi: 10.7668/hbnxb.20190635

    HUANG Shaohui, YANG Junfang, YANG Yunma, et al. Soil organic carbon sequestration under long term fertilization practices in fluvo-aquic soil of north china plain[J]. Acta Agriculturae Boreali-Sinica, 2019, 34(S1): 168-175. (in Chinese with English abstract) doi: 10.7668/hbnxb.20190635

    [21] 聂良鹏,郭利伟,牛海燕,等. 轮耕对小麦-玉米两熟农田耕层构造及作物产量与品质的影响[J]. 作物学报,2015,41(3):468-478. doi: 10.3724/SP.J.1006.2015.00468

    NIE Leipeng, GUO Liwei, NIU Haiyan, et al. Effects of rotational tillage on tilth soil structure and crop yield and quality in maize-wheat cropping system[J]. Acta Agronomica Sinica, 2015, 41(3): 468-478. (in Chinese with English abstract) doi: 10.3724/SP.J.1006.2015.00468

    [22] 鲍士旦. 土壤农化分析[M]. 北京:中国农业出版社,2005:25-28.
    [23] 包建平,袁根生,董方圆,等. 生物质炭与秸秆施用对红壤有机碳组分和微生物活性的影响[J]. 土壤学报,2020,57(3):721-729.

    BAO Jianping, YUAN Gensheng, DONG Fangyuan, et al. Effects of biochar application and straw returning on organic carbon fractionations and microbial activities in a red soil[J]. Acta Pedologica Sinica, 2020, 57(3): 721-729. (in Chinese with English abstract)

    [24] 何家帅,李新美,魏跃鹏,等. 长期深耕秸秆还田配施生物炭对砂姜黑土团聚体及小麦-玉米产量的影响[J]. 农业工程学报,2024,40(7):161-171. doi: 10.11975/j.issn.1002-6819.202402001

    HE Jiashuai, LI Xinmei, WEI Yuepeng, et al. Effects of long-term deep tillage and straw return with biochar addition to lime concretion black soil on the aggregates and wheat-maize yield[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2024, 40(7): 161-171. (in Chinese with English abstract) doi: 10.11975/j.issn.1002-6819.202402001

    [25]

    KUNTZ M, BERNER A, GATTINGER A, et al. Influence of reduced tillage on earthworm and microbial communities under organic arable farming[J]. Pedobiologia, 2013, 56(4/6): 251-260.

    [26]

    ALI KUBAR K, HUANG L, W L J, et al. Long-term tillage and straw returning effects on organic C fractions and chemical composition of SOC in rice-rape cropping system[J]. Archives of Agronomy and Soil Science, 2019, 65(1): 125-137. doi: 10.1080/03650340.2018.1490726

    [27]

    LU X F, HOU E Q, GUO J Y, et al. Nitrogen addition stimulates soil aggregation and enhances carbon storage in terrestrial ecosystems of China: A meta-analysis[J]. Global Change Biology, 2021, 27(12): 2780-2792. doi: 10.1111/gcb.15604

    [28]

    TROYER I D, AMERY F, MOORLEGHEM C V, et al. Tracing the source and fate of dissolved organic matter in soil after incorporation of a 13C labelled residue: A batch incubation study[J]. Soil Biology and Biochemistry, 2011, 43(3): 513-519. doi: 10.1016/j.soilbio.2010.11.016

    [29] 刘强,梁鑫,董佩丽,等. 不同施肥措施对黄土丘陵区农田土壤有机碳组分和碳库管理指数的影响[J]. 土壤,2023,55(2):446-452

    LIU Qiang, LIANG Xin, DONG Peili, et al. Effects of different fertilization methods on farmland soil active organic carbon and carbon pool management indicators in loess hilly area[J]. Soils, 2023, 55(2): 446-452. (in Chinese with English abstract)

    [30] 陈甜,元方慧,张琳梅,等. 不同化学性质叶凋落物添加对土壤有机碳矿化及激发效应的影响[J]. 应用生态学报,2022,33(10):2602-2610.

    CHEN Tian, YUAN Fanghui, ZHANG Linmei, et al. Effects of addition of leaf litter with different chemical properties on soil organic carbon mineralization and priming effect[J]. Chinese Journal of Applied Ecology, 2022, 33(10): 2602-2610. (in Chinese with English abstract)

    [31]

    YING H, YIN Y L, ZHENG H F, et al. Newer and select maize, wheat, and rice varieties can help mitigate N footprint while producing more grain[J]. Global Change Biology, 2019, 25(12): 4273-4281. doi: 10.1111/gcb.14798

    [32] 郭振,王小利,段建军,等. 长期施肥对黄壤性水稻土有机碳矿化的影响[J]. 土壤学报,2018,55(1):225-235. doi: 10.11766/trxb201705260233

    GUO Zhen, WANG Xiaoli, DUAN Jianjun, et al. Long-term fertilization and mineralization of soil organic carbon in paddy soil from yellow earth[J]. Acta Pedologica Sinica, 2018, 55(1): 225-235. (in Chinese with English abstract) doi: 10.11766/trxb201705260233

    [33] 张嫒,郑朝霞,赵志远,等. 有机无机肥长期配施对果园土壤碳库及温室气体排放的影响[J]. 环境科学,2023,44(10):5823-5831.

    ZHANG Ai, ZHENG Zhaoxia, ZHAO Zhiyuan, et al. Effects of long-term combined application of organic and inorganic fertilizers on woil darbon pool and greenhouse gas emissions in orchards[J]. Environmental Science, 2023, 44(10): 5823-5831. (in Chinese with English abstract)

    [34]

    LEMKE R L, VANDENBYGAART A J, CAMPBELL C A. Crop residue removal and fertilizer N: Effects on soil organic carbon in a long-term crop rotation experiment on a udic boroll[J]. Agriculture, Ecosystems & Environment, 2010, 135(1/2): 42-51.

    [35]

    BLAGODATSKAYA E, KUZYAKOV Y. Mechanisms of real and apparent priming effects and their dependence on soil microbial biomass and community structure: critical review[J]. Biology and Fertility of Soils, 2008, 45(2): 115-131. doi: 10.1007/s00374-008-0334-y

    [36] 田平,姜英,孙悦,等. 不同还田方式对玉米秸秆腐解及土壤养分含量的影响[J]. 中国生态农业学报(中英文),2019,27(1):100-108.

    TIAN Ping, JIANG Ying, SUN Yue, et al. Effect of straw return methods on maize straw decomposition and soil nutrients contents[J]. Chinese Journal of Eco-Agriculture, 2019, 27(1): 100-108. (in Chinese with English abstract)

    [37] 黄璐,赵国慧,李廷亮,等. 秸秆还田对黄土旱塬麦田土壤团聚体有机碳组分的影响[J]. 农业工程学报,2022,38(13):123-132. doi: 10.11975/j.issn.1002-6819.2022.13.014

    HUANG Lu, ZHAO Guohui, LI Tingliang, et al. Effects of straw returning on the organic carbon components of soil aggregates in wheat fields on the loess plateau[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2022, 38(13): 123-132. (in Chinese with English abstract) doi: 10.11975/j.issn.1002-6819.2022.13.014

    [38] 王碧胜,于维水,武雪萍,等. 不同耕作措施下添加秸秆对土壤有机碳及其相关因素的影响[J]. 中国农业科学,2021,54(6):1176-1187. doi: 10.3864/j.issn.0578-1752.2021.06.009

    WANG Bisheng, YU Weishui, WU Xueping, et al. Effects of straw addition on soil organic carbon and related factors under different tillage practices[J]. Scientia Agricultura Sinica, 2021, 54(6): 1176-1187. (in Chinese with English abstract) doi: 10.3864/j.issn.0578-1752.2021.06.009

    [39] 王碧胜,于维水,武雪萍,等. 添加玉米秸秆对旱作土壤团聚体及其有机碳含量的影响[J]. 中国农业科学,2019,52(9):1553-1563. doi: 10.3864/j.issn.0578-1752.2019.09.007

    WANG Bisheng, YU Weishui, WU Xueping, et al. Effect of straw addition on the formation of aggregates and accumulation of organic carbon in dryland soil[J]. Scientia Agricultura Sinica, 2019, 52(9): 1553-1563. (in Chinese with English abstract) doi: 10.3864/j.issn.0578-1752.2019.09.007

    [40] 吴玉红,郝兴顺,田霄鸿,等. 秸秆还田与化肥配施对汉中盆地稻麦轮作农田土壤固碳及经济效益的影响[J]. 作物学报,2020,46(2):259-268. doi: 10.3724/SP.J.1006.2020.92013

    WU Yuhong, HAO Xingshun, TIAN Xiaohong, et al. Effect of straw returning combined with NPK fertilization on soil carbon sequestration and economic benefits under rice-wheat rotation in Hanzhong basin[J]. Acta Agronomica Sinica, 2020, 46(2): 259-268. (in Chinese with English abstract) doi: 10.3724/SP.J.1006.2020.92013

    [41]

    ZHOU S, LIN J J, WANG P, et al. Resistant soil organic carbon is more vulnerable to priming by root exudate fractions than relatively active soil organic carbon[J]. Plant and Soil, 2022, 488(29): 71-82.

    [42] 曾莉,张鑫,张水清,等. 不同施氮量下潮土中小麦秸秆腐解特性及其养分释放和结构变化特征[J]. 植物营养与肥料学报,2020,26(9):1565-1577.

    ZENG Li, ZHANG Xin, ZHANG Shuiqing, et al. Characteristics of decomposition, nutrient release and structure change of wheat straw in a fluvo-aquic soil under different nitrogen application rates[J]. Journal of Plant Nutrition and Fertilizers, 2020, 26(9): 1565-1577. (in Chinese with English abstract)

    [43] 戚瑞敏,赵秉强,李娟,等. 添加牛粪对长期不同施肥潮土有机碳矿化的影响及激发效应[J]. 农业工程学报,2016,32(增刊2):118-127.

    QI Ruimin, ZHAO Bingqiang, LI Juan, et al. Effects of cattle manure addition on soil organic carbon mineralization and priming effects under long-term fertilization regimes[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2016, 32(Supp.2): 118-127. (in Chinese with English abstract)

    [44] 王光翔,张黎明,李晓迪,等. 基于高精度土壤数据库的苏北旱地固碳速率和潜力研究[J]. 生态环境学报,2016,25(3):422-431.

    WANG Guangxiang, ZHANG Liming, LI Xiaodi, et al. Study of soil organic carbon sequestration rate and potential of upland in northern jiangsu province based on high-resolution soil database[J]. Ecology and Environmental Sciences, 2016, 25(3): 422-431. (in Chinese with English abstract)

图(4)  /  表(7)
计量
  • 文章访问数:  206
  • HTML全文浏览量:  26
  • PDF下载量:  76
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-06-03
  • 修回日期:  2024-08-17
  • 网络出版日期:  2024-08-04
  • 刊出日期:  2024-09-29

目录

/

返回文章
返回