Design and experiment of the cam progressive ejecting-out seedling-taking device for rice potted seedlings
-
摘要:
针对现有水稻钵体苗抛秧机取苗装置高速作业稳定性差、不同秧龄适应性差、取苗损伤率偏高等问题,该研究基于割圆曲线凸轮-平行四杆强制顶出取苗的技术思路,设计了一种水稻钵体苗凸轮渐进顶出式取苗装置,构建了取苗顶杆回程段、升程段、回转段轨迹方程,确定了取苗凸轮轮廓曲线;建立了取苗顶杆机构运动学模型,明确了取苗顶杆与钵体苗盘下拉的运动关系。分析了钵体苗初始顶苗阶段顶出过程,确定了取苗顶杆最大极限回转速度。以野香优航1573、黄华占、甬优12为供试品种,以秧龄(两叶一心、三叶、三叶一心)、钵体含水率(40%、50%、60%)和取苗频率(4、6、8次/s)为试验因素,以取苗成功率和取苗损伤率为评价指标,开展正交试验。试验结果表明:3个供试品种取苗成功率为95.68%~100%,取苗损伤率为0.45%~3.80%,且秧龄对取苗成功率、取苗损伤率影响最大,钵体含水率、取苗频率影响相对较小,取苗损伤率与取苗成功率呈负相关趋势;优选水平为秧龄三叶一心、钵体含水率50%、取苗频率4次/s,该条件下供试品种甬优12取苗成功率均值为99.78%,取苗损伤率均值为0.22%。研究结果可为水稻钵体苗高效低损有序抛秧机的研制提供关键技术与核心部件。
Abstract:A rice potted seedling throwing machine is required for high stability in high-speed operation, high adaptability to different seedling ages, as well as a low damage rate in the seedling-taking device. In this study, a cam progressive ejecting-out seedling-taking device was designed for the rice potted seedling, according to the quadratrix curve and parallel four-bar mechanism. The quadratrix curve was taken as the profile curve of the return section and lifting section of the seedling-taking cam. While the elliptic curve was used as the contour curve of the rotary section of the seedling extraction cam. The trajectory equations of the return section, lifting section, and rotary section of the seedling-taking top-bar were established to determine the profile curve of the seedling-taking cam. Subsequently, the kinematic model of the seedling-taking top-bar mechanism and a single-group seedling-taking top-bar were established to determine the downward motion relationship between the seedling-taking top-bar and the potted seedling tray. As such, the horizontal movement of the seedling-taking top-bar was analyzed to determine the relationship between the rotational speed of the seedling-taking top-bar mechanism. The ejection state of the rice potted seedling was further explored during the initial seedling-taking stage. Furthermore, the maximum limit rotational speed of the seedling-taking top-bar mechanism was ultimately determined in conjunction with actual operations. A systematic investigation was implemented to explore the effects of different factors on the working performance of the seedling-taking device. Yexiangyouhang 1573, Huanghuazhan, and Yongyou 12 were selected as the test varieties. Taking the seedling age (two-leaf one-heart, three-leaf, and three-leaf one-heart), moisture content seedlings (40%, 50%, and 60%), and seedling-taking frequency (4, 6, and 8 times/s) as test factors, orthogonal experiments were conducted with the success rate and damage rate of seedling-taking as evaluation indexes. The specific experiments were carried out in the Key Laboratory of Modern Agricultural Equipment at Jiangxi Agricultural University. The experiment results indicated that the success rates of seedling-taking ranged from 95.68% to 100% for the three rice varieties. The damage rate of seedling-taking was ranged from 0.45% to 3.80%. At the same time, the seedling age shared the greatest impact on the success rate and damage rate of seedling-taking, while the moisture content seedlings and seedling-taking frequency presented relatively smaller effects. A negative correlation was observed between the damage rate and success rate of seedling-taking. The seedling-taking device was used for the subsequent optimization. Data analysis was used to determine the optimal combination of test factors. An optimal combination was achieved with three-leaf one-heart seedling age, 50% moisture content, and a seedling-taking frequency of 4 times/s. The average success rate of seedling-taking for the variety Yongyou 12 was 99.78%, and the average damage rate of seedling-taking was 0.22%. The seedling-taking device can effectively improve the existing seedling-taking mechanisms of seedling-throwing machines. The finding can provide the key technologies and core components for the subsequent development of efficient, low-damage, and orderly rice potted seedling throwing machines.
-
Keywords:
- rice /
- cam /
- potted seedling /
- top-bar /
- ejecting out /
- seedling-taking device
-
0. 引 言
水稻钵体苗机械有序抛秧技术具有栽植根系损伤小、返青快、分蘖早、穗型整齐等优点[1-5],但市场上成熟稳定的水稻钵体苗有序抛秧装备仍然较为缺乏。水稻钵体苗取苗装置是有序抛秧机的核心部件之一,直接影响钵体苗机械有序抛秧作业质量。现有水稻钵体苗取苗装置主要有夹拔式、顶出式和气力式等3种取苗方式,为提升其工作性能,诸多专家学者开展了有益探索。
YE等[6-10]基于不完全偏心齿轮、非圆齿轮行星轮系等设计了系列夹苗式和夹钵式取苗装置;刘欣等[11]基于柔性夹持输送带,开发了水稻钵体苗拔取式取苗装置;彭忠圣等[12]采用相似原理设计了一型绳夹式取苗装置;蔡金平等[13]基于苗夹回转运动和凸轮控制开合的思路,设计了一种水稻钵体苗滚筒凸轮式螺旋夹拔取苗装置;王术平等[14]基于相似原理设计了一种螺旋排列单辊夹式拔秧机构。唐艳芹等[15-17]采用压缩气流从苗盘底部将水稻钵体苗吹出;韩绿化等[18]采用气嘴排从苗盘底部逐排顶吹钵体,实现钵体松脱;包春江等[19]研制了水稻钵体苗空气整根气吸式取苗装置,一次完成4株钵体苗移栽。朱云峰等[20]开发的曲柄摇杆顶出式取苗装置,实现水稻钵体苗成排有序取出;张国凤等[21-23]设计的凸轮-杠杆顶出式水稻钵体苗取秧机构,凸轮借助杠杆放大顶杆行程,可提高取苗效率。但现有取苗方式仍存在一些不足,夹拔式取苗装置夹持取苗过程易损伤钵体苗茎秆、叶,顶出式取苗装置多采用间歇性取苗方式而难以适应高速作业,气力式取苗装置因不同钵体苗秧龄差异导致气力取苗成功率偏低。
为此,本文针对水稻钵体苗取苗装置存在高速作业稳定性差、不同秧龄适应性差、取苗损伤率偏高等问题,拟基于割圆曲线凸轮-平行四杆强制顶出取苗的技术思路,首先,建立取苗顶杆回程段、升程段、回转段轨迹方程,确定取苗凸轮轮廓曲线;其次,建立取苗顶杆机构运动学模型,确定取苗顶杆与苗盘下拉的运动关系;然后,对钵体苗初始顶苗阶段顶出过程进行分析,确定取苗顶杆最大极限回转速度,进而设计水稻钵体苗凸轮渐进顶出式取苗装置,以期为水稻钵体苗高效低损有序抛秧机的研制提供支撑。
1. 总体结构与工作原理
1.1 总体结构
取苗装置是水稻钵体苗有序抛秧机的核心部件之一。本文设计的取苗装置主要由取苗顶杆机构、取苗凸轮箱、驱动轴、底板、苗盘导向机构和苗盘导向隔板等组成,如图1所示。取苗凸轮箱作为主要支撑部件左右对称安装在底板上,取苗凸轮箱上设置有取苗凸轮;取苗顶杆机构左右两侧嵌套安装在取苗凸轮箱内;驱动轴安装在右侧取苗凸轮箱,驱动轴一侧安装有齿轮用以驱动取苗顶杆机构;苗盘导向机构位于取苗顶杆机构正前方,苗盘导向隔板两端分别与取苗凸轮箱和底板固接。
其中,顶杆机构主要由12组顶杆、安装轴、主轴、支撑曲轴、连接曲轴、主动齿盘和从动轮盘等组成,如图2所示。主轴两端嵌合有一对主动齿盘,用卡簧进行限位,支撑曲轴通过轴承安装在主轴端部,主动齿盘可随主轴在支撑曲轴上进行周转;从动轮盘通过轴承安装在支撑曲轴另一端,从动轮盘和主动齿盘上设有3对均布的通孔,通过连接曲轴相连接;主动齿盘和从动轮盘上设有均布的12条滑槽,顶杆置于滑槽上,两侧通过卡簧限位,两端通过轴承嵌合在凸轮箱内;安装轴、连接曲轴和支撑曲轴的偏心距一致,三者形成平行四杆机构且顶杆安装轴可在滑槽上滑移。
1.2 工作原理
如图3所示,取苗装置工作时,外部动力通过驱动轴驱动取苗顶杆机构回转,带动各组取苗顶杆沿取苗凸轮箱上取苗凸轮轮廓曲线周转;苗盘导向机构通过左右两侧沟槽限制钵体苗盘左右偏移并引导苗盘向下运动,苗盘导向隔板限制苗盘向前变形弯曲并在完成取苗作业后引导苗盘退盘回收;当苗盘运动至取苗位置时,基于割圆曲线凸轮-平行四杆强制顶出取苗技术思路,顶杆安装轴上均布的数根取苗顶杆沿取苗凸轮轮廓曲线依序渐进顶入苗盘苗钵,将钵体苗从苗钵内顶出,完成取苗作业,之后顶杆依序退出苗钵,进入下一个作业循环。其中,苗盘依靠取苗顶杆向下的拉力及自身重力沿苗盘导向机构和苗盘导向隔板向下运动。
2. 关键部件设计
2.1 取苗凸轮轮廓曲线
取苗顶杆运行轨迹取决于设置在取苗凸轮箱上的取苗凸轮轮廓曲线,主要由顶杆回程段、升程段、回转段凸轮轮廓曲线构成。
2.1.1 回程与升程段凸轮轮廓曲线
在竖直方向上,由于钵体苗盘相邻两苗钵距离始终保持不变,为实现取苗顶杆连续依次水平顶出、回退及不干涉钵体苗盘输送运动,基于割圆曲线上任意两点与原点连线夹角一致时任意两点在某一方向上的投影距离亦保持不变的特性,本文以割圆曲线作为回程与升程段的轮廓曲线。当取苗凸轮轮廓(即割圆曲线)给定上下相邻两苗钵距离后,取苗顶杆机构在沿轮廓曲线周转的过程中,位于割圆曲线上的相邻两顶杆在竖直方向的距离与相邻两苗钵距离一致,即可实现同步运动。以取苗顶杆机构的旋转中心为原点O建立坐标系,如图4所示。
图 4 顶杆回程-升程段凸轮运动轨迹注:l1为回程段凸轮轮廓曲线;l2为升程段凸轮轮廓曲线;l3为钵体苗盘竖直向下运动轨迹;v为钵体苗盘向下运动速度,mm·s−1;ω为顶杆安装轴绕原点O的旋转角速度,rad·s−1;AiBi、A1B1、A2B2为取苗顶杆位于l1时的投影线段,An-1Bn-1、An-2Bn-2、An-3Bn-3为顶杆位于l2时的投影线段;OAi为顶杆安装轴与原点O的连线;θ为OAi与X轴的夹角,(°);θk为相邻两组取苗顶杆与原点O连线之间的夹角,(°);LH为相邻两组取苗顶杆在Y轴方向上的距离,mm;LP为l3与O的垂直距离,mm。Figure 4. Cam motion trajectory in return-lifting section of top-barNote: l1 is the cam profile curve of the return section; l2 is the cam profile curve of the lifting section; l3 is the vertical downward motion trajectory of the seedling tray; v is the downward movement speed of the seedling tray, mm·s−1; ω is the angular velocity of the top-bar installation shaft rotating around the origin O, rad·s−1; AiBi, A1B1, A2B2 are the projection segments of the top-bar locate in l1, An-1Bn-1, An-2Bn-2, An-3Bn-3 are the projection segments of the top-bar locate in l2, mm; OAi is the line connecting the top-bar installation shaft and the origin O; θ is the angle between OAi and the X-axis, (°); θk is the angle between the lines connecting two adjacent top-bars and the origin O, (°); LH is the distance between two adjacent top-bars in the Y-axis direction, mm; LP is the vertical distance between l3 and thee origin O, mm.当AiBi沿l1运动时,记此时OAi长度为ρ1,分析可知,ρ1与θ关系如下:
ρ1sinθ=vθω (1) θK=2πn (2) v=ωLHθK (3) 式中n为取苗顶杆组数。
联立式(1)~(3)可得回程段凸轮轮廓曲线的极坐标方程为
ρ1=nLHθ2πsinθ (4) 为保证多组取苗顶杆在顶出过程中不干涉苗盘运动,相邻两组取苗顶杆垂直距离LH应与相邻两苗钵行距相等,故取LH=19 mm。基于苗盘最大弯曲半径和机构工作的稳定性,设置12组取苗顶杆,以π/6为分度均布在l1上,故θk=π/6,n=12。
将上述参数代入式(4)可得:
ρ1=114θπsinθ (5) 当AiBi沿l2运动时,同理可得升程段凸轮轮廓曲线极坐标方程为
ρ2=114θ−2ππsinθ (6) 回程段工作区间为[0,59π],升程段工作区间为[139π,2π],回转段工作区间为(59π,139π)。
2.1.2 回转段凸轮轮廓曲线
取苗凸轮的结构应避免出现刚性冲击,故回程段、升程段与回转段相切连接,如图5所示。当AiBi沿l4运动时,以椭圆曲线为回转段凸轮轮廓曲线,建立极坐标方程为
图 5 顶杆回转段凸轮运动轨迹注:l4为回转段凸轮轮廓曲线;A4B4为顶杆位于l1与l4切点处的投影线段,A5B5、A6B6为顶杆位于l4时的投影线段。Figure 5. Cam motion trajectory in rotary working section of top-barNote: l4 is the cam profile curve for the rotation section; A4B4 is the projection segment of the top-bar at the tangent point between l1 and l4; A5B5, A6B6 is the projection segments of the top-bar locate in l4.ρ3=−b2c−√a2b4+a2b2(a2−c2)tan2θb2cosθ+a2sinθtanθ (7) 式中a为椭圆短半轴长度,mm;b为椭圆长半轴长度,mm;c为椭圆距离坐标原点距离,mm。
因l1、l4相切连接,当θ=5π9时ρ1=ρ3,化简可得:
−b2c−√a2b4+32.16a2b2(a2−c2)−0.17b2−5.59a2=570sin5π9 (8) 为避免相邻两组取苗顶杆回转过程中产生干涉,应满足式(9)的约束条件之一。
{|ρ3cos(θ+θk)−ρ1cosθ|⩾ (9) 式中R为顶杆安装轴半径,mm。
D488P型钵体苗盘(图6)上整齐排列有448个苗钵,苗盘上苗钵结构参数直接影响顶杆结构设计,苗钵质心C位于苗钵底部上方14.43 mm处,与圆锥台体母线的垂直距离为6.68 mm。
图 6 D488P型钵体苗盘与苗钵尺寸注:Db为苗钵上孔直径,Db=16 mm;db为苗钵下孔直径,db=10 mm;hb为苗钵高度,hb=25 mm;hc为苗钵质心C与苗钵底部的距离,hc=14.43 mm。Figure 6. D488P potted seedlings tray and seedling pot sizeNote: Db is the diameter of the upper hole of the seedling pot, Db=16 mm; db is the diameter of the lower hole of the seedling pot, db=10 mm; hb is the height of the seedling pot, hb=25 mm; hc is the distance from the center of mass C of the seedling pot to its bottom, hc=14.43 mm.为保证钵体苗在顶出过程能够顺利从苗钵中脱离,顶杆顶入苗钵长度应超过钵体苗质心位置,并结合取苗顶杆组件安装空间尺寸要求,取顶杆长度LD =17 mm。根据前期试验,顶杆直径Dd=4 mm,顶杆安装轴半径R=6 mm时,顶出载荷较小,且顶出效果稳定。
根据机构整体尺寸设计要求,在保证取苗顶杆机构能够顺利回转的前提下,设定回转段极径小于90 mm,将上述参数代入式(9)可得:
\left\{ \begin{gathered} {\rho_3} \leqslant 90 \\ {\rho_1}\sin \frac{{5\pi }}{9} < b < \sqrt {{{90}^2} - {c^2}} \\ \end{gathered} \right. (10) 联立式(8)、式(10)可得a=55,b=70,c=35,代入式(7),可得回转段凸轮轮廓曲线极坐标方程如下:
{\rho _3} = \frac{{ - 35 - \sqrt {1111.22{{\tan }^2}\theta + 3025} }}{{\cos \theta + 0.62\sin \theta \tan \theta }} (11) 2.1.3 取苗凸轮轮廓
联立ρ1、ρ2、ρ3可得,取苗凸轮轮廓曲线极坐标方程如下:
\rho=\left\{ \begin{array}{*{20}{l}} \dfrac{{114 \cdot \theta }}{{\pi \sin \theta }},& 0\le \theta \le \dfrac{5\pi }{9} \\ \dfrac{{ - 35 - \sqrt {1111.22{{\tan }^2}\theta + 3025} }}{{\cos \theta + 0.62\sin \theta \tan \theta }},& \dfrac{5\pi }{9} < \theta < \dfrac{13\pi }{9} \\ \dfrac{{114\left( {\theta - 2\pi } \right)}}{{\pi \sin \theta }},& \dfrac{13\pi }{9}\le \theta \le 2\pi \end{array} \right. (12) 基于上述极坐标方程,利用Matlab结合包络法设计取苗凸轮轮廓曲线,如图7所示。
2.2 取苗顶杆机构
2.2.1 取苗顶杆机构运动学分析
在各组取苗顶杆有序沿取苗凸轮轮廓曲线运行的条件下,为保证顶杆始终保持水平状态,设支撑曲轴、连接曲轴和顶杆安装轴的偏心距离相同,则取苗顶杆机构可化简为连架杆长度可变的平行四杆机构。如图8a所示,已知主动齿盘及从动轮盘所设滑槽均匀分布,且各组取苗顶杆外部条件一致,因此各组取苗顶杆在取苗凸轮任意位置均可形成平行四杆机构,从而使各组取苗顶杆始终保持水平,图8b为取苗顶杆机构其中一组取苗顶杆所形成的平行四杆机构。
图 8 连架杆长度可变的平行四杆机构简图注:L1为取苗凸轮轮廓曲线;L2为顶杆安装轴回转轮廓曲线;L3和L4分别为从动轮盘、主动齿盘上的滑槽;AB为取苗顶杆在竖直平面上的投影线段;A和C分别为顶杆安装轴、顶杆安装轴端部;Oa和Ob分别为主动齿盘、从动轮盘的旋转中心;vA为顶杆安装轴的线速度,mm·s−1;vAx和vAy分别为顶杆安装轴在X轴、Y轴方向上的分速度,mm·s−1;ωL为主动轮盘回转角速度,rad·s−1;θL为滑槽与X轴之间的夹角,(°)。Figure 8. Sketch of parallel four-bar mechanism withNote: L1 is the profile curve for seedling-taking cam; L2 is the rotation profile curve of the top-bar installation shaft; L3 and L4 are the slots on the follower wheel disc and the driving toothed disc; AB is the projection segment of the top-bar on the vertical plane; A and C are the top-bar installation shaft and the end of top-bar installation shaft; Oa and Ob are the rotation centers of the driving toothed disc and the follower toothed disc; vA is the linear velocity of the top-bar installation shaft, mm·s−1; vAx and vAy are the velocity components of the top-bar installation shaft in the X-axis and Y-axis directions, mm·s−1; ωL is the rotary angular velocity of the driving toothed disc, rad·s−1; θL is the angle between the slot and the X-axis, (°).取苗作业时,A和C可分别沿L4、L3滑移,因此OaA和ObC可视为长度可变的连架杆,OaOb、OaA、AC和ObC构成连架杆长度可变的平行四杆机构,该平行四杆机构在回程段存在如下关系:
v_{Ax}=\frac{\mathrm{d}}{\mathrm{d}t}\left[l_{O_{\text{a}}A}\cos(\Delta\theta_L)\right] (13) v_{Ay}=\frac{\mathrm{d}}{\mathrm{d}t}\left[l_{O_{\text{a}}A}\sin(\Delta\theta_L)\right] (14) {l_{{O_a}A}} = 114\frac{{\Delta {\theta _L}}}{{\pi \sin (\Delta {\theta _L})}} (15) 式中l_{O_{\text{a}}A} 为连架杆OaA长度,mm;\Delta {\theta _L} 为时间t内连架杆回转的角度,\Delta {\theta _L} =ωLt,(°)。
联立式(13)~(15)可得:
{v_{Ax}} = \frac{{114{w_L}}}{\pi }\frac{{\tan ({w _L}t) - {w _L}t{{\sec }^2}{w _L}t}}{{{{\tan }^2}{w _L}t}} (16) {v_{Ay}} = \frac{{114{w_L}}}{\pi } (17) 因为A、B、C三点均在取苗顶杆上,由平行四杆机构工作原理可得:取苗顶杆的水平速度为vAx,竖直速度为vAy。即在取苗过程中,取苗顶杆机构对钵体苗施加的分速度与ωL有关;当ωL确定时,取苗顶杆机构匀速竖直下拉苗盘。
2.2.2 初始顶苗阶段顶出过程分析
基于上述分析,钵体苗盘下拉速度与ωL呈正相关,即取苗顶杆机构转速影响苗盘进给快慢。因抛秧机具采用双人轮流送盘的作业方式,实际作业中取苗顶杆机构转速存在上限,根据前期试验知其范围为10~90 r/min。基于式(17),设置取苗顶杆机构转速为30 r/min,此时连架杆回转角速度ωL=3.14 rad/s,代入式(17)中并利用Matlab绘制顶杆分速度vAx在回程-升程段(0≤t≤1.11 s)的函数曲线,如图9所示,其中纵坐标正负仅代表顶杆水平运动方向。分析可知,取苗顶杆处于回程-升程段时在水平方向近似做匀减速-匀加速度运动,其水平分速度峰值出现在工作段首尾两端。若改变取苗顶杆机构转速即回转角速度ωL,则vAx在回程-升程段的作业时间t与峰值将发生相应变化。
在t=0.134 s时,钵体苗盘运动至取苗位置,此时顶杆恰好处于初始顶苗阶段,如图10a所示,钵体苗钵体在这一阶段受力与苗钵壁之间产生微量位移从而分离,过程极短,钵体底部受力点Od受到顶杆顶出力Fd的作用后发生轻度形变,根据冲量定理可知,vAx越大,Fd越大。由于时间间隔极小,钵体在该时间段受到苗钵壁之间的阻力可视为恒定不变,根据惯性定理,钵体在极短时间内受力时与苗钵存在相对静止趋势。因vAx同回转角速度ωL成正比,当ωL增大至某一临界值时,钵体在保持相对静止趋势的同时将受到顶出力Fd的极大冲击,使得钵体被顶杆顶穿受损,出现严重变形,如图10b所示。
图 10 初始顶苗阶段顶出过程分析注:Fd为顶杆对钵体苗钵体的顶出力,N;Od为钵体底部受力点;Ff1和Ff2分别为上下苗钵壁对钵体的摩擦力,N;FN1和FN2分别为上下苗钵壁对钵体的支持力,N;G为钵体重力,N;θa为钵体锥度,(°)。Figure 10. Analysis of ejection at initial seedling-tanking stageNote:Fd is the ejecting force of the top-bar to the pot body, N; Od is force point at the bottom of the pot body; Ff1 and Ff2 are the friction force of the upper and lower seedling pot wall on the pot body, N; FN1 and FN2 are the supporting force of the upper and lower seedling pot wall on the pot body, N; G is gravity of pot body, N; θa is the taper of pot body, (°).为确定ωL的临界值以避免取苗装置在作业时超出该值造成钵体苗严重受损,本文依据顶杆机构转速范围对ωL从1.0~9.42 rad/s进行9个水平的划分并进行预试验。结果表明,当ωL≥8.37 rad/s时钵体苗顶出受损严重,由此可知,取苗装置作业时,应使ωL<8.37 rad/s。
实际生产中,抛秧机具以栽植株距0.12~0.20 m,行距0.20~0.30 m为作业标准。机具作业速度同栽植株距、回转角速度之间存在如下关系:
{v_j} = \frac{{6{\omega _L}{L_Z}}}{\pi } (18) 式中vj为抛秧机具作业速度,m/s;LZ为钵体苗栽植株距,m。
根据式(18),当ωL=8.37 rad/s时,满足栽植株距0.12~0.20 m的机具作业速度范围为1.92~3.20 m/s,故机具作业速度应小于1.92 m/s。本文所设计机具作业速度范围为0.80~1.00 m/s,符合作业要求。
3. 取苗装置性能台架试验
3.1 试验材料
以野香优航
1573 、黄华占、甬优12江西区域主推品种为供试品种;供试秧盘为亿科农林生产的D448P复用型钵体苗育秧盘;供试育秧基质为湖南省湘晖农业技术开发有限公司生产的水稻机插育秧基质。2023年6月14日、6月19日和6月23日分别进行3个批次钵体苗育秧,3个品种秧龄分别为两叶一心、三叶、三叶一心。育秧和苗期管理依照水稻抛秧技术规程NY/T 1607-2008进行[24]。3.2 试验装置
试验装置主要由取苗装置、带式输送机、调速电机等组成,如图11所示。取苗装置通过螺栓固定安装在带式输送机一端,调速电机通过联轴器驱动取苗装置完成取苗,带式输送机承接取出的钵体苗并向前缓慢输送以便观测统计。改变调速电机转速可控制取苗装置达到试验所需的顶杆机构转速。
3.3 试验设计
3.3.1 因素与水平
不同秧龄钵体苗盘根和茎叶形态有明显差异[25-27],是直接影响取苗装置工作性能的重要因素,结合生产实际需要,选取钵体苗秧龄两叶一心、三叶和三叶一心作为试验水平。
钵体含水率直接影响根系与基质的粘结力、钵体与秧盘内壁的摩擦力与黏附力、钵体顶出力学特性等[28-30],从而影响取苗成功率。预试验结果表明,钵体含水率过高(大于70%),顶出取苗时钵体极易破碎;钵体含水率过低(小于20%),钵体苗易脱水干枯,影响栽植质量。同时,参照相关技术规程[31],借助DH-190自动水分测定仪测定钵体含水率,取钵体含水率40%、50%和60%作为试验水平。
取苗频率对应取苗装置每秒的取苗量,是衡量取苗装置工作效率的关键技术参数。根据机具实际作业情况,取苗频率为机具作业速度和株距的比值,为使机具作业速度0.8~1.0 m/s时满足株距在0.12~0.2 m可调节,取苗频率需在4~8次/s范围内可调。为此,本文取苗频率水平设置为4、6和8次/s,对应每秒取苗量分别为4行(56株)、6行(84株)和8行(112株),可满足实际作业要求。
3.3.2 试验方法
以秧龄、钵体含水率和取苗频率为试验因素,取苗成功率和取苗损伤率为评价指标,开展取苗装置工作性能正交试验。每组试验取苗10行(140株),每个品种分别进行9组试验,重复3次。试验后对试验结果开展极差分析,以明确各因素对取苗装置工作性能的影响主次顺序,并获取各品种的最优取苗作业参数组合,试验因素与水平如表1所示。
表 1 试验因素与水平Table 1. Factor and levels of experiment水平
Levels秧龄
Seedling age A钵体含水率
Moisture content of
pot body B/%取苗频率
Seedlings-taking
frequency C/(次·s−1)1 两叶一心 40 4 2 三叶 50 6 3 三叶一心 60 8 3.3.3 试验评价指标
取苗成功率Hq:每次试验中,从钵体苗盘中被完全顶出并脱离的钵体苗记为取苗成功,成功取出钵体苗数量占钵体苗总数的百分比为取苗成功率,计算如下:
{H_q} = \frac{{{N_q}}}{{{N_z}}} \times 100\text{%} (19) 式中Hq为取苗成功率,%;Nq为成功取出钵体苗数量;Nz为钵体苗总数。
取苗损伤率Hs:在顶出过程中出现钵体破碎、根系受损的钵体苗记为受损钵体苗,记录成功取出的钵体苗中受损钵体苗数量,受损钵体苗数量占成功取出钵体苗数量的百分比为取苗损伤率,计算如下:
{H_s} = \frac{{{N_s}}}{{{N_q}}} \times 100\text{%} (20) 式中Hs为取苗损伤率,%;Ns为受损钵体苗数量。
3.3.4 数据处理
采用Microsoft Excel统计数据,计算取苗成功率和取苗损伤率,并进行极差分析确定各因素对评价指标的影响主次顺序。
3.4 各因素对取苗成功率的影响
由表2~表4可知,就3个供试品种而言,取苗成功率最小值为95.68%,最大值为100%,平均值为98.25%,其中野香优航1573取苗成功率为95.68%~99.78%,黄华占取苗成功率为95.90%~100%,甬优12取苗成功率为96.59%~100%,且取苗成功率随秧龄增大而增大,随钵体含水率增大呈先增大后减小趋势,随取苗频率加快而减小。
表 2 野香优航1573试验方案及结果Table 2. Experiment scheme and results of Yexiangyouhang 1573试验号
Test No.A B C 空列
Empty取苗成功率
Success rate
of seedling
taking Hq/%取苗损伤率
Damage rate
of seedling
taking Hs/%1 1 1 1 1 97.51 3.03 2 1 2 2 2 97.97 2.79 3 1 3 3 3 95.68 3.80 4 2 1 2 3 97.49 1.86 5 2 2 3 1 98.19 2.09 6 2 3 1 2 98.40 1.84 7 3 1 3 2 99.56 0.69 8 3 2 1 3 99.78 0.45 9 3 3 2 1 99.56 0.69 Hq k1 97.05 98.19 98.56 98.42 k2 98.03 98.65 98.34 98.64 k3 99.63 97.88 97.81 97.65 R 2.58 0.77 0.75 0.99 Hs k1 3.21 1.86 1.77 1.94 k2 1.93 1.78 1.78 1.77 k3 0.61 2.11 2.19 2.04 R 2.60 0.33 0.42 0.26 表 3 黄华占试验方案及结果Table 3. Experiment scheme and results of Huanghuazhan试验号
Test No.A B C 空列
EmptyHq/% Hs/% 1 1 1 2 1 95.90 3.08 2 1 2 3 2 96.37 2.83 3 1 3 1 3 96.83 3.29 4 2 1 3 3 96.83 1.88 5 2 2 1 1 99.10 1.83 6 2 3 2 2 97.97 2.09 7 3 1 1 2 99.78 0.70 8 3 2 2 3 100.00 0.68 9 3 3 3 1 100.00 1.14 Hq k1 96.37 97.50 98.57 98.33 k2 97.97 98.49 97.96 98.04 k3 99.93 98.27 97.73 97.89 R 3.56 0.99 0.84 0.45 Hs k1 3.07 1.89 1.94 2.02 k2 1.93 1.78 1.95 1.87 k3 0.84 2.17 1.95 1.95 R 2.23 0.39 0.01 0.14 表 4 甬优12试验方案及结果Table 4. Experiment scheme and results of Yongyou 12试验号
Test No.A B C 空列
EmptyHq/% Hs/% 1 1 1 3 1 96.83 3.05 2 1 2 1 2 97.51 2.34 3 1 3 2 3 96.59 3.29 4 2 1 1 3 98.87 2.07 5 2 2 2 1 98.86 1.83 6 2 3 3 2 97.29 2.56 7 3 1 2 2 100.00 0.67 8 3 2 3 3 100.00 0.68 9 3 3 1 1 100.00 0.68 Hq k1 96.98 98.57 98.79 98.56 k2 98.34 98.79 98.48 98.27 k3 100.00 97.96 98.04 98.49 R 3.02 0.83 0.75 0.30 Hs k1 2.89 1.93 1.70 1.85 k2 2.15 1.62 1.93 1.86 k3 0.68 2.18 2.10 2.01 R 2.22 0.56 0.40 0.16 由表2~表4还可知,就3个供试品种而言,通过分析极差值大小,影响取苗成功率的主次顺序均为秧龄、钵体含水率、取苗频率;分析各因素下的k值,取苗成功率较优水平组合均为A3B2C1,符合各因素对取苗成功率影响趋势。
3.5 各因素对取苗损伤率的影响
由表2~表4可知,就3个供试品种而言,取苗损伤率最小值为0.45%,最大值为3.80%,平均值为2.09%,其中野香优航1573取苗损伤率为0.45%~3.80%,黄华占取苗损伤率为0.68%~3.29%,甬优12取苗损伤率为0.67%~3.29%,且取苗损伤率随秧龄增大而减小,随钵体含水率增大先减小后增大趋势,随取苗频率加快而增大。取苗损伤率与取苗成功率呈负相关趋势,取苗成功率越高,取苗损伤率越低。
由表2~表4还可知,影响野香优航1573和黄华占取苗损伤率的主次顺序均为秧龄、取苗频率、钵体含水率,影响甬优12取苗损伤率的主次顺序为秧龄、钵体含水率、取苗频率。分析各因素下的k值,取苗损伤率较优水平组合均为A3B2C1,符合各因素对取苗损伤率影响趋势。
综上,就3个供试品种而言,在秧龄(两叶一心、三叶、三叶一心)、钵体含水率(40%、50%、60%)和取苗频率(4、6、8次/s)条件下,秧龄对取苗成功率、取苗损伤率影响最大,钵体含水率、取苗频率影响相对较小,取苗损伤率与取苗成功率呈负相关趋势。该结果表明,本文设计的取苗装置对于钵体苗秧龄存在一定的要求,但对不同钵体含水率、取苗频率具有较好的适应性。
3.6 验证试验
为验证较优水平组合A3B2C1(秧龄为三叶一心、钵体苗含水率为50%和取苗频率为4次/s)对取苗成功率、取苗损伤率的准确性,以甬优12开展验证试验,单次取苗10行(140株),重复3次,结果如表5所示。
表 5 重复验证试验结果Table 5. Repeat verification experiment results试验号
Test No.取苗成功率
Success rate of
seedling-taking Hq/%取苗损伤率
Damage rate of
seedling-taking Hs/%1 100.00 0 2 100.00 0.66 3 99.33 0 平均值 99.78 0.22 由表5可知,优选组合重复验证试验取苗成功率均值为99.78%,取苗损伤率均值为0.22%,表明优选方案能够满足水稻钵体苗抛秧作业要求,可为后续整机装备的研制提供技术支撑。
4. 结 论
1)设计了一种水稻钵体苗凸轮渐进顶出式取苗装置,建立取苗顶杆回程段、升程段、回转段轨迹方程,确定了取苗凸轮轮廓曲线;建立取苗顶杆机构运动学模型,确定了取苗顶杆与苗盘下拉的运动关系;分析钵体苗初始顶苗阶段顶出过程,确定了取苗顶杆最大极限回转速度。
2)就野香优航1573、黄华占、甬优12三个水稻品种而言,在秧龄(两叶一心、三叶、三叶一心)、钵体含水率(40%、50%、60%)和取苗频率(4、6、8次/s)条件下,秧龄对取苗成功率、取苗损伤率影响最大,钵体含水率、取苗频率影响相对较小,取苗损伤率与取苗成功率呈负相关趋势。
3)优选水平为秧龄三叶一心、钵体含水率50%、取苗频率4次/s,该条件下供试品种甬优12取苗成功率均值为99.78%,取苗损伤率均值为0.22%。
-
图 4 顶杆回程-升程段凸轮运动轨迹
注:l1为回程段凸轮轮廓曲线;l2为升程段凸轮轮廓曲线;l3为钵体苗盘竖直向下运动轨迹;v为钵体苗盘向下运动速度,mm·s−1;ω为顶杆安装轴绕原点O的旋转角速度,rad·s−1;AiBi、A1B1、A2B2为取苗顶杆位于l1时的投影线段,An-1Bn-1、An-2Bn-2、An-3Bn-3为顶杆位于l2时的投影线段;OAi为顶杆安装轴与原点O的连线;θ为OAi与X轴的夹角,(°);θk为相邻两组取苗顶杆与原点O连线之间的夹角,(°);LH为相邻两组取苗顶杆在Y轴方向上的距离,mm;LP为l3与O的垂直距离,mm。
Figure 4. Cam motion trajectory in return-lifting section of top-bar
Note: l1 is the cam profile curve of the return section; l2 is the cam profile curve of the lifting section; l3 is the vertical downward motion trajectory of the seedling tray; v is the downward movement speed of the seedling tray, mm·s−1; ω is the angular velocity of the top-bar installation shaft rotating around the origin O, rad·s−1; AiBi, A1B1, A2B2 are the projection segments of the top-bar locate in l1, An-1Bn-1, An-2Bn-2, An-3Bn-3 are the projection segments of the top-bar locate in l2, mm; OAi is the line connecting the top-bar installation shaft and the origin O; θ is the angle between OAi and the X-axis, (°); θk is the angle between the lines connecting two adjacent top-bars and the origin O, (°); LH is the distance between two adjacent top-bars in the Y-axis direction, mm; LP is the vertical distance between l3 and thee origin O, mm.
图 5 顶杆回转段凸轮运动轨迹
注:l4为回转段凸轮轮廓曲线;A4B4为顶杆位于l1与l4切点处的投影线段,A5B5、A6B6为顶杆位于l4时的投影线段。
Figure 5. Cam motion trajectory in rotary working section of top-bar
Note: l4 is the cam profile curve for the rotation section; A4B4 is the projection segment of the top-bar at the tangent point between l1 and l4; A5B5, A6B6 is the projection segments of the top-bar locate in l4.
图 6 D488P型钵体苗盘与苗钵尺寸
注:Db为苗钵上孔直径,Db=16 mm;db为苗钵下孔直径,db=10 mm;hb为苗钵高度,hb=25 mm;hc为苗钵质心C与苗钵底部的距离,hc=14.43 mm。
Figure 6. D488P potted seedlings tray and seedling pot size
Note: Db is the diameter of the upper hole of the seedling pot, Db=16 mm; db is the diameter of the lower hole of the seedling pot, db=10 mm; hb is the height of the seedling pot, hb=25 mm; hc is the distance from the center of mass C of the seedling pot to its bottom, hc=14.43 mm.
图 8 连架杆长度可变的平行四杆机构简图
注:L1为取苗凸轮轮廓曲线;L2为顶杆安装轴回转轮廓曲线;L3和L4分别为从动轮盘、主动齿盘上的滑槽;AB为取苗顶杆在竖直平面上的投影线段;A和C分别为顶杆安装轴、顶杆安装轴端部;Oa和Ob分别为主动齿盘、从动轮盘的旋转中心;vA为顶杆安装轴的线速度,mm·s−1;vAx和vAy分别为顶杆安装轴在X轴、Y轴方向上的分速度,mm·s−1;ωL为主动轮盘回转角速度,rad·s−1;θL为滑槽与X轴之间的夹角,(°)。
Figure 8. Sketch of parallel four-bar mechanism with
Note: L1 is the profile curve for seedling-taking cam; L2 is the rotation profile curve of the top-bar installation shaft; L3 and L4 are the slots on the follower wheel disc and the driving toothed disc; AB is the projection segment of the top-bar on the vertical plane; A and C are the top-bar installation shaft and the end of top-bar installation shaft; Oa and Ob are the rotation centers of the driving toothed disc and the follower toothed disc; vA is the linear velocity of the top-bar installation shaft, mm·s−1; vAx and vAy are the velocity components of the top-bar installation shaft in the X-axis and Y-axis directions, mm·s−1; ωL is the rotary angular velocity of the driving toothed disc, rad·s−1; θL is the angle between the slot and the X-axis, (°).
图 10 初始顶苗阶段顶出过程分析
注:Fd为顶杆对钵体苗钵体的顶出力,N;Od为钵体底部受力点;Ff1和Ff2分别为上下苗钵壁对钵体的摩擦力,N;FN1和FN2分别为上下苗钵壁对钵体的支持力,N;G为钵体重力,N;θa为钵体锥度,(°)。
Figure 10. Analysis of ejection at initial seedling-tanking stage
Note:Fd is the ejecting force of the top-bar to the pot body, N; Od is force point at the bottom of the pot body; Ff1 and Ff2 are the friction force of the upper and lower seedling pot wall on the pot body, N; FN1 and FN2 are the supporting force of the upper and lower seedling pot wall on the pot body, N; G is gravity of pot body, N; θa is the taper of pot body, (°).
表 1 试验因素与水平
Table 1 Factor and levels of experiment
水平
Levels秧龄
Seedling age A钵体含水率
Moisture content of
pot body B/%取苗频率
Seedlings-taking
frequency C/(次·s−1)1 两叶一心 40 4 2 三叶 50 6 3 三叶一心 60 8 表 2 野香优航1573试验方案及结果
Table 2 Experiment scheme and results of Yexiangyouhang 1573
试验号
Test No.A B C 空列
Empty取苗成功率
Success rate
of seedling
taking Hq/%取苗损伤率
Damage rate
of seedling
taking Hs/%1 1 1 1 1 97.51 3.03 2 1 2 2 2 97.97 2.79 3 1 3 3 3 95.68 3.80 4 2 1 2 3 97.49 1.86 5 2 2 3 1 98.19 2.09 6 2 3 1 2 98.40 1.84 7 3 1 3 2 99.56 0.69 8 3 2 1 3 99.78 0.45 9 3 3 2 1 99.56 0.69 Hq k1 97.05 98.19 98.56 98.42 k2 98.03 98.65 98.34 98.64 k3 99.63 97.88 97.81 97.65 R 2.58 0.77 0.75 0.99 Hs k1 3.21 1.86 1.77 1.94 k2 1.93 1.78 1.78 1.77 k3 0.61 2.11 2.19 2.04 R 2.60 0.33 0.42 0.26 表 3 黄华占试验方案及结果
Table 3 Experiment scheme and results of Huanghuazhan
试验号
Test No.A B C 空列
EmptyHq/% Hs/% 1 1 1 2 1 95.90 3.08 2 1 2 3 2 96.37 2.83 3 1 3 1 3 96.83 3.29 4 2 1 3 3 96.83 1.88 5 2 2 1 1 99.10 1.83 6 2 3 2 2 97.97 2.09 7 3 1 1 2 99.78 0.70 8 3 2 2 3 100.00 0.68 9 3 3 3 1 100.00 1.14 Hq k1 96.37 97.50 98.57 98.33 k2 97.97 98.49 97.96 98.04 k3 99.93 98.27 97.73 97.89 R 3.56 0.99 0.84 0.45 Hs k1 3.07 1.89 1.94 2.02 k2 1.93 1.78 1.95 1.87 k3 0.84 2.17 1.95 1.95 R 2.23 0.39 0.01 0.14 表 4 甬优12试验方案及结果
Table 4 Experiment scheme and results of Yongyou 12
试验号
Test No.A B C 空列
EmptyHq/% Hs/% 1 1 1 3 1 96.83 3.05 2 1 2 1 2 97.51 2.34 3 1 3 2 3 96.59 3.29 4 2 1 1 3 98.87 2.07 5 2 2 2 1 98.86 1.83 6 2 3 3 2 97.29 2.56 7 3 1 2 2 100.00 0.67 8 3 2 3 3 100.00 0.68 9 3 3 1 1 100.00 0.68 Hq k1 96.98 98.57 98.79 98.56 k2 98.34 98.79 98.48 98.27 k3 100.00 97.96 98.04 98.49 R 3.02 0.83 0.75 0.30 Hs k1 2.89 1.93 1.70 1.85 k2 2.15 1.62 1.93 1.86 k3 0.68 2.18 2.10 2.01 R 2.22 0.56 0.40 0.16 表 5 重复验证试验结果
Table 5 Repeat verification experiment results
试验号
Test No.取苗成功率
Success rate of
seedling-taking Hq/%取苗损伤率
Damage rate of
seedling-taking Hs/%1 100.00 0 2 100.00 0.66 3 99.33 0 平均值 99.78 0.22 -
[1] 罗友谊,王慰亲,郑华斌,等. 不同机械有序种植方式对水稻生长特性及产量的影响[J]. 中国农业科技导报,2021,23(7):162-171. LUO Youyi, WANG Weiqin, ZHENG Huabin, et al. Influences of different mechanical and orderly planting methods on growth characteristics and yield of rice[J]. Journal of Agricultural Science and Technology, 2021, 23(7): 162-171. (in Chinese with English abstract)
[2] 夏倩倩,张文毅,纪要,等. 我国机械抛秧技术与装备的研究现状及趋势[J]. 中国农机化学报,2019,40(6):201-208. XIA Qianqian, ZHANG Wenyi, JI Yao, et al. Research status and trend of mechanical throwing seedling technology and equipment in China[J]. Journal of Chinese Agricultural Mechanization, 2019, 40(6): 201-208. (in Chinese with English abstract)
[3] WANG W Q, XIANG L, ZHENG H B, et al. Orderly mechanical seedling-throwing: An efficient and high yielding establishment method for rice production[J]. Agronomy, 2022, 12(11): 2837-2837. doi: 10.3390/agronomy12112837
[4] 张洪程,胡雅杰,扬建昌,等. 中国特色水稻栽培学发展与展望[J]. 中国农业科学,2021,54(7):1301-1321. doi: 10.3864/j.issn.0578-1752.2021.07.001 ZHANG Hongcheng, HU Yajie, Yang Jianchang, et al. Development and prospect of rice cultivation in china[J]. Scientia Agricultura Sinica, 2021, 54(7): 1301-1321. (in Chinese with English abstract) doi: 10.3864/j.issn.0578-1752.2021.07.001
[5] 王慰亲,唐启源,陈元伟,等. 水稻机械精量有序抛秧栽培的产量形成和生长发育特征研究[J]. 作物学报,2021,47(5):942-951. doi: 10.3724/SP.J.1006.2021.02032 WANG Weiqin, TANG Qiyuan, CHEN Yuanwei, et al. Evaluation of orderly mechanical seedling-broadcasting on yield formation and growth characteristics of rice[J]. Acta Agronomica Sinica, 2021, 47(5): 942-951. (in Chinese with English abstract) doi: 10.3724/SP.J.1006.2021.02032
[6] YE B L, YI W M, YU G H, et al. Optimization design and test of rice plug seedling transplanting mechanism of planetary gear train with incomplete eccentric circular gear and non-circular gears[J]. International Journal of Agricultural and Biological Engineering, 2017, 10(6): 43-55. doi: 10.25165/j.ijabe.20171006.2712
[7] 吴国环,俞高红,叶秉良,等. 行星轮系水稻钵苗移栽机构正反求设计方法研究[J]. 农业机械学报,2020,51(2):85-93,102. WU Guohuan, YU Gaohong, YE Bingliang, et al. Forward-Reverse design method for rice potted seedling transplanting mechanism with compound planetary gear train[J]. Transactions of the Chinese Society for Agricultural Machinery, 2020, 51(2): 85-93, 102. (in Chinese with English abstract)
[8] 吴国环,俞高红,项筱洁,等. 三移栽臂水稻钵苗移栽机构设计与试验[J]. 农业工程学报,2017,33(15):15-22. WU Guohuan, YU Gaohong, XIANG Xiaojie, et al. Design and test of rice potted seedling transplanting mechanism with three transplanting arms[J]. Transactions of the Chinese Society for Agricultural Engineering (Transactions of the CSAE), 2017, 33(15): 15-22. (in Chinese with English abstract)
[9] 俞高红,金也,常数数,等. 夹钵式水稻钵苗移栽机构设计与试验[J]. 农业机械学报,2019,50(7):100-108. doi: 10.6041/j.issn.1000-1298.2019.07.010 YU Gaohong, JIN Ye, CHANG Shushu, et al. Design and test of clipping-plug type transplanting mechanism of rice plug-seedling[J]. Transactions of the Chinese Society for Agricultural Machinery, 2019, 50(7): 100-108. (in Chinese with English abstract) doi: 10.6041/j.issn.1000-1298.2019.07.010
[10] ZHOU M L, WEI Z X, WANG Z L, et al. Design and experimental investigation of a transplanting mechanism for super rice pot seedlings[J]. Agriculture, 2023, 13(10): 1920. doi: 10.3390/agriculture13101920
[11] 刘欣,孙松林,肖名涛,等. 水稻钵苗柔性夹持拔苗装置的设计与试验[J]. 湖南农业大学学报(自然科学版),2017,43(3):324-328. LIU Xin, SUN Songlin, XIAO Mingtao, et al. Design and experimental of flexible clamping and pulling device for rice potted–seedling[J]. Journal of Hunan Agricultural University (Natural Sciences), 2017, 43(3): 324-328. (in Chinese with English abstract)
[12] 彭忠圣,胡爱卿,彭韩非,等. 一种取秧装置:CN201710045987.2[P]. 2018-05-01. [13] 蔡金平,刘木华,肖丽萍,等. 变行距水稻钵苗移栽机移栽装置设计与试验[J]. 农业机械学报,2020,51(4):50-59. doi: 10.6041/j.issn.1000-1298.2020.04.006 CAI Jinping, LIU Muhua, XIAO Liping, et al. Design and experiment of transplanting device with variable row-spacing of rice potted seedling Transplanter[J]. Transactions of the Chinese Society for Agricultural Machinery, 2020, 51(4): 50-59. (in Chinese with English abstract) doi: 10.6041/j.issn.1000-1298.2020.04.006
[14] 王术平,宋建龙,龙学平. 一种螺旋排列单辊夹式拔秧机构:CN202220563107.7[P]. 2022-07-15. [15] 唐艳芹,王玉兴,张殿武,等. 四轮驱动气力有序抛秧机研究[J]. 中国农机化,2009(3):72-75. TANG Yanqin, WANG Yuxing, ZHANG Dianwu, et al. Research on four-wheel drive pneumatic throwing transplanter of paddy seedling[J]. Journal of Chinese Agricultural Mechanization, 2009(3): 72-75. (in Chinese with English abstract)
[16] 林剑明. 基于小型底盘的气力抛秧机改进与研究[D]. 广州:华南农业大学,2017. LIN Jianming. The Study and Improvement of Pneumatic Transplanter Based on Small Chassis[D]. Guangzhou: Huanan Agricultural University, 2017. (in Chinese with English abstract)
[17] 姚颖杰,王玉兴,唐艳芹,等. 水稻气力有序抛栽钵苗运动过程研究[J]. 农机化研究,2019,41(7):159-165. doi: 10.3969/j.issn.1003-188X.2019.07.030 YAO Yingjie, WANG Yuxing, TANG Yuqin, et al. Research on the movement of paddy pot seedlings in the process of pneumatic ordered throwing transplantation[J]. Journal of Agricultural Mechanization Research, 2019, 41(7): 159-165. (in Chinese with English abstract) doi: 10.3969/j.issn.1003-188X.2019.07.030
[18] 韩绿化,毛罕平,赵慧敏,等. 蔬菜穴盘育苗底部气吹式钵体松脱装置设计[J]. 农业工程学报,2019,35(4):37-45. doi: 10.11975/j.issn.1002-6819.2019.04.005 HAN Lvhua, MAO Hanping, ZHAO Huimin, et al. Design of root lump loosening mechanism using air jets to eject vegetable plug seedlings[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2019, 35(4): 37-45. (in Chinese with English abstract) doi: 10.11975/j.issn.1002-6819.2019.04.005
[19] 包春江,李宝筏,包文育,等. 水稻钵苗空气整根气吸式有序移栽机的研究[J]. 农业工程学报,2003(6):130-134. doi: 10.3321/j.issn:1002-6819.2003.06.031 BAO Chunjiang, LI Baofa, BAO Wenyu, et al. Air-sucking sequential rice transplanter for air-pruning tray grown seedlings[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2003(6): 130-134. (in Chinese with English abstract) doi: 10.3321/j.issn:1002-6819.2003.06.031
[20] 朱云峰,符立,张界善. 顶出式水稻钵体苗全自动移栽机构设计[J]. 江苏农机化,2023(3):18-21. doi: 10.3969/j.issn.1004-9908.2023.03.014 [21] 张国凤,陈建能,李建桥,等. 水稻钵苗有序抛秧机顶出机构的参数优化[J]. 江苏大学学报(自然科学版),2008,29(2):101-105. ZHANG Guofeng, CHEN Jianneng, LI Jianqiao, et al. Parameter optimization of ejection mechanismof ordered transplanter for plotted rice-seedling[J]. Journal of Jiangsu University(Natural Science Edition), 2008, 29(2): 101-105. (in Chinese with English abstract)
[22] 杨科,张国凤,赵匀. 基于TRIZ冲突解决原理的顶出式有序抛秧机构[J]. 浙江理工大学学报,2009,26(3):375-378. doi: 10.3969/j.issn.1673-3851.2009.03.015 YANG Ke, ZHANG Guofeng, ZHAO Yun. Innovative design of ordered detrusion rice-seedling throwing device by TRIZ conflict settling principles[J]. Journal of Zhejiang Sci-Tech University, 2009, 26(3): 375-378. (in Chinese with English abstract) doi: 10.3969/j.issn.1673-3851.2009.03.015
[23] 原新斌,张国凤,陈建能,等. 顶出式水稻钵苗有序移栽机的研究[J]. 浙江理工大学学报,2011,28(5):749-752. doi: 10.3969/j.issn.1673-3851.2011.05.020 YUAN Xinbin, ZHANG Guofeng, CHEN Jianneng, et al. Development on rice plotted-seeding sequential transplanter of ejection type[J]. Journal of Zhejiang Sci-Tech University, 2011, 28(5): 749-752. (in Chinese with English abstract) doi: 10.3969/j.issn.1673-3851.2011.05.020
[24] 中华人民共和国农业农村部. 水稻抛秧技术规程:NY/T 1607-2008[S]. 北京:中国农业出版社,2008. [25] 贾旋,宋建农,王继承,等. 秧龄和基土比对机插大钵体毯状苗晚稻群体质量和产量的影响[J]. 农业工程学报,2022,38(12):1-11. doi: 10.11975/j.issn.1002-6819.2022.12.001 JIA Xuan, SONG Jiannong, WANG Jicheng, et al. Effects of seedling age and substrate soil ratio on the population quality and yield of late rice of machine-transplanted large-pot carpet seedlings[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2022, 38(12): 1-11. (in Chinese with English abstract) doi: 10.11975/j.issn.1002-6819.2022.12.001
[26] 王坤庭,冯源,刘梦竹,等. 播种量和秧龄对机插籼粳杂交稻秧苗素质、产量和加工品质的影响[J]. 中国稻米,2024,30(3):91-97. doi: 10.3969/j.issn.1006-8082.2024.03.016 WANG Kunting. FENG Yuan. LIU Mengzhu. et al. Effects of sowing rate and seedling age on seedling quality, yield and processing quality of mechanically transpanted hybrid rice[J]. China Rice, 2024, 30(3): 91-97. (in Chinese with English abstract) doi: 10.3969/j.issn.1006-8082.2024.03.016
[27] 潘志军,吴小文,陈刚,等. 不同秧龄对沿江地区双季晚稻秧苗素质及产量的影响[J]. 中国稻米,2017,23(6):97-100. doi: 10.3969/j.issn.1006-8082.2017.06.023 PAN Zhijun, WU Xiaowen, CHEN Gang, et al. Effects of different seedling ages on seedling quality and yield components in double-cropping late rice in middle and lower reaches of yangtze river[J]. China Rice, 2017, 23(6): 97-100. (in Chinese with English abstract) doi: 10.3969/j.issn.1006-8082.2017.06.023
[28] 冯世杰,颜波,全伟,等. 活动苗盘脱苗力学分析及粘附力影响因素试验研究[J]. 农业工程学报,2019,35(12):21-28. doi: 10.11975/j.issn.1002-6819.2019.12.003 FENG Shijie, YAN Bo, QUAN Wei, et al. Mechanical analysis of seedling detaching from movable tray and influence factors of adhesion[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2019, 35(12): 21-28. (in Chinese with English abstract) doi: 10.11975/j.issn.1002-6819.2019.12.003
[29] 胡建平,刘育彤,刘伟,等. 蔬菜自动移栽机顶夹拔组合式取苗装置试验研究[J]. 农业机械学报,2022,53(S1):110-117. doi: 10.6041/j.issn.1000-1298.2022.S1.012 HU Jianping, LIU Yutong, LIU Wei, et al. Experiment on combiner seedling picking device with top clamping and pulling[J]. Transactions of the Chinese Society for Agricultural Machinery, 2022, 53(S1): 110-117. (in Chinese with English abstract) doi: 10.6041/j.issn.1000-1298.2022.S1.012
[30] 韩绿化,毛罕平,胡建平,等. 穴盘苗自动移栽钵体力学特性试验[J]. 农业工程学报,2013,29(2):24-29. HAN Lvhua, MAO Hanping, HU Jianping, et al. Experiment on mechanical property of seedling pot for automatic transplanter[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2013, 29(2): 24-29. (in Chinese with English abstract)
[31] 中华人民共和国农业农村部. 水稻栽植机械作业质量:NY/T 989-2020[S]. 北京:中国农业出版社,2020.