Citation: | Ma Huiqin, Huang Wenjiang, Jing Yuanshu. Wheat powdery mildew forecasting in filling stage based on remote sensing and meteorological data[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2016, 32(9): 165-172. DOI: 10.11975/j.issn.1002-6819.2016.09.023 |
[1] |
李彤霄. 我国小麦白粉病预报方法研究进展[J]. 气象与环境科学,2013,36(3):44-48.Li Tongxiao. Research progress of wheat powdery mildew forecasting method[J]. Meteorological and Environmental Sciences, 2013, 36(3): 44-48. (in Chinese with English abstract)
|
[2] |
郑秋红,杨霏云,朱玉洁. 小麦白粉病发生气象条件和气象预报研究进展[J]. 中国农业气象,2013,34(3):358-365.Zheng Qiuhong, Yang Feiyun, Zhu Yujie. Meteorological factors and its forecast on wheat powdery mildew occurrence in China[J]. Chinese Journal of Agrometeorology, 2013, 34(3): 358-365. (in Chinese with English abstract)
|
[3] |
居为民,高苹. 气象条件对小麦白粉病发生影响的研究[J]. 气象,2006,26(2):50-53.Ju Weimin, Gao Ping. The study of influence of meteorological condition on winter wheat powdery mildew[J]. Meteorological Monthly, 2006, 26(2): 50-53. (in Chinese with English abstract)
|
[4] |
钱拴,霍治国,叶彩玲. 我国小麦白粉病发生流行的长期气象预测研究[J]. 自然灾害学报,2005,14(4):56-63.Qian Shuan, HuoZhiguo, Ye Cailing. Long-term meteorological prediction research on epidemic of wheat powdery mildew in China[J]. Journal of Natural Disasters, 2005, 14(4): 56-63. (in Chinese with English abstract)
|
[5] |
姚树然,李春强,霍治国,等. 河北小麦白粉病流行的气象指标研究[J]. 自然灾害学报,2008,17(4):38-43.Yao Shuran, Li Chunqiang, Huo Zhiguo, et al. A research on climatic indices for epidemic of wheat powdery mildew[J]. Journal of Natural Disasters, 2008, 17(4): 38-43. (in Chinese with English abstract)
|
[6] |
Stansbury C D, Mckirdy S J. Forecasting climate suitability for Karnal bunt of wheat: a comparison of two meteorological methods[J]. Australasian Plant Pathology, 2002, 31(1): 81-92.
|
[7] |
沈文颖,李映雪,冯伟,等. 基于因子分析-BP神经网络的小麦叶片白粉病反演模型[J]. 农业工程学报,2015,31(22):183-190.Shen Wenying, Li Yingxue, Feng Wei, et al. Inversion model for severity of powdery mildew in wheat leaves based on factor analysis-BP neural network[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2015, 31(22): 183-190. (in Chinese with English abstract)
|
[8] |
Zhang Jingcheng, Yuan Lin, Nie Chenwei, et al. Forecasting of powdery mildew disease with multi-sources of remote sensing information[C]// International Conference on Agro-Geoinformatics. IEEE, 2014:1-5.
|
[9] |
Zhang Jingcheng, Pu Ruiliang, Yuan Lin, et al. Integrating remotely sensed and meteorological observations to forecast wheat powdery mildew at a regional scale[J]. IEEE Journal of Selected Topics in Applied Earth Observations & Remote Sensing, 2014, 7(11):4328-4339.
|
[10] |
Luo juhua, Zhao Chunjianag, Huang Wenjiang, et al. Discriminating wheat aphid damage degree using 2-dimensional feature sapce derived from landsat 5 TM[J]. Sensor Letters, 2012, 10(1/2): 608-614.
|
[11] |
Jonas Franke, Gunter Menz. Multi-temporal wheat disease detection by multi-spectral remote sensing[J]. Precision Agriculture, 2007, 8(3): 161-172.
|
[12] |
Luo Juhua, Huang Wenjiang, Zhao Jingling, et al. Predicting the probability of wheat aphid occurrence using satellite remote sensing and meteorological data[J]. Optik-International Journal for Light and Electron Optics, 2014, 125(19): 5660-5665.
|
[13] |
Hossain A, Nasser M. Recurrent support and relevance vector machines based model with application to forecasting volatility of financial returns[J]. Journal of Intelligent Learning Systems and Applications, 2011, 3(4): 230.
|
[14] |
Majumder S K, Nirmalya G, Gupta P K. Relevance vector machine for optical diagnosis of cancer[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2005, 36(4): 323-333.
|
[15] |
祝志慧,刘婷,马美湖. 基于高光谱信息融合和相关向量机的种蛋无损检测[J]. 农业工程学报,2015,31(15):285-292.Zhu Zhihui, Liu Ting, Ma Meihu. Hatching eggs nondestructive detection based on hyperspectral-imaging information and RVM[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2015, 31(15): 285-292. (in Chinese with English abstract)
|
[16] |
Liu X, Hu Z Q, Yang G. Wind speed forecasting based on relevance vector machine and empirical mode decomposition[J]. Advances in Information Sciences and Service Sciences, 2013, 5(10): 279-287.
|
[17] |
李慧杰,刘亚南,卫志农,等. 基于相关向量机的短期风速预测模型[J]. 电力自动化设备,2013,33(10):28-32.Li Huijie, Liu Yanan, Wei Zhinong, et al. Short-term wind speed forecasting model based on relevance vector machine[J]. Electric Power Automation Equipment, 2013, 33(10): 28-32. (in Chinese with English abstract)
|
[18] |
唐翠翠,黄文江,罗菊花,等. 基于相关向量机的冬小麦蚜虫遥感预测[J]. 农业工程学报,2015,31(6):201-207.Tang Cuicui, Huang Wenjiang, Luo Juhua, et al. Forecasting wheat aphid with remote sensing based on relevance vector machine[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2015, 31(6): 201-207. (in Chinese with English abstract)
|
[19] |
霍治国,陈林,刘万才,等. 中国小麦白粉病发生地域分布的气候分区[J]. 生态学报, 2002,22(11):1873-1880.Huo Zhiguo, Chen Lin, Liu Wancai, et al. Climatic zonation of wheat powdery mildew in China[J].Acta Ecologica Sinica,2002, 22(11): 1873-1880.(in Chinese with English abstract)
|
[20] |
张竞成. 多源遥感数据小麦病害信息提取方法研究[D]. 浙江大学,2012.Zhang Jingcheng. Methods for Information Extraction of Wheat Disease Based on Multi-source Remote Sensing Data[D]. Zhejiang University, 2012. (in Chinese with English abstract)
|
[21] |
Jiménez-Mu?oz J C, Sobrino J A. A generalized single- channel method for retrieving land surface temperature from remote sensing data[J]. Journal of Geophysical Research: Atmospheres (1984-2012), 2003, 108(D22): 2015-2023.
|
[22] |
徐涵秋. 新型Landsat8卫星影像的反射率和地表温度反演[J]. 地球物理学报,2015(3):741-747.Xu Hanqiu. Retrieval of the reflectance and land surface temperature of newly-launched Landsat 8 satellite[J]. Chinese Journal of Geophysics, 2015(3): 741-747. (in Chinese with English abstract)
|
[23] |
余卫东,朱晓东,杨君健,等. 商丘市小麦白粉病预测模式研究[J]. 气象与环境科学,2008,31(1):20-23.Yu Weidong, Zhu Xiaodong, Yang Junjian, et al. Study on prediction model for wheat powdery mildew in Shangqiu city[J]. Meteorological and Environmental Sciences, 2008, 31(1): 20-23. (in Chinese with English abstract)
|
[24] |
李军龙,张剑,张丛,等. 气象要素空间插值方法的比较分析[J]. 草业科学,2006,23(8):6-11.Li Junlong, Zhang Jian, Zhang Cong, et al. Analyze and compare the spatial interpolation methods for climate factor[J]. Pratacultural Science, 2006, 23(8): 6-11. (in Chinese with English abstract)
|
[25] |
马轩龙,李春娥,陈全功. 基于GIS的气象要素空间插值方法研究[J]. 草业科学,2008,25(11):13-19.Ma Xuanlong, Li Chun'e, Chen Quangong. Study on the method of GIS based spatial interpolation of climate factors in China[J]. Pratacultural Science, 2008, 25(11): 13-19. (in Chinese with English abstract)
|
[26] |
Kohavi R, John G. Wrappers for feature subset selection[J]. Artificial Intelligence, 1997, 97(1/2): 273-324.
|
[27] |
张丽新. 高维数据的特征选择及基于特征选择的集成学习研究[D]. 北京:清华大学,2004.Zhang Lixin. Study on Feature Selection and Ensemble Learning Based on Feature Selection for High-Dimensional Datasets[D]. Beijing: Tsinghua University, 2004. (in Chinese with English abstract)
|
[28] |
Kira K, Rendell L. The feature selection problem: Traditional methods and a new algorithm[C]//Proceedings of the Ninth National conference on Artificial Intelligence. New Orleans: AAAI Press, 1992: 129-134.
|
[29] |
张丽新,王家廞,赵雁南,等. 基于Relief的组合式特征选择[J]. 复旦学报:自然科学版,2004,43(5):893-898.Zhang Lixin, Wang Jiaxin, Zhao Yannan, et al. Combination feature selection based on Relief[J]. Journal of Fudan University: Natural Science, 2004, 43(5): 893-898. (in Chinese with English abstract)
|
[30] |
杨树仁,沈洪远. 基于相关向量机的机器学习算法研究与应用[J]. 计算技术与自动化,2010,29(1):43-47.Yang Shuren, Shen Hongyuan. Research and application of machine learning algorithm based on relevance vector machine[J]. Computing Technology and Automation, 2010, 29(1): 43-47. (in Chinese with English abstract)
|
[31] |
杨国鹏,余旭初,周欣,等. 基于相关向量机的高光谱影像分类研究[J]. 测绘学报,2010,39(6):572-578.Yang Guopeng, Yu Xuchu, Zhou Xin, et al. Research on relevance vector machine for hyperspectral imagery classification[J]. Acta Geodaetica et Cartographica Sinica, 2010, 39(6): 572-578. (in Chinese with English abstract)
|
[32] |
赵春晖,张燚. 相关向量机分类方法的研究进展与分析[J]. 智能系统学报,2012(4):294-301.Zhao Chunhui, Zhang Yi. Research progress and analysis on methods for classification of RVM[J]. CAAI Transactions on Intelligent Systems, 2012(4): 294-301. (in Chinese with English abstract)
|
[33] |
Hastie T, Tibshirani R, Friedman J. The Elements of Statistical Learning[M]. New York: Springer, 2009.
|
[34] |
David H A, Edwards A W F. Annotated Readings in the History of Statistics[M]. New York:Springer Science & Business Media, 2001.
|
[35] |
Lemeshow S, Hosmer D W. A review of goodness of fit statistics for use in the development of logistic regression models[J]. American Journal of Epidemiology, 1982, 115(1): 92-106.
|
[1] | Huang Linsheng, Ruan Chao, Huang Wenjiang, Shi Yue, Peng Dailiang, Ding Wenjuan. Wheat powdery mildew monitoring based on GF-1 remote sensing image and relief-mRMR-GASVM model[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2018, 34(15): 167-175. DOI: 10.11975/j.issn.1002-6819.2018.15.021 |
[2] | Huang Linsheng, Liu Wenjing, Huang Wenjiang, Zhao Jinling, Song Furan. Remote sensing monitoring of winter wheat powdery mildew based on wavelet analysis and support vector machine[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017, 33(14): 188-195. DOI: 10.11975/j.issn.1002-6819.2017.14.026 |
[3] | Ma Huiqin, Huang Wenjiang, Jing Yuanshu, Dong Yingying, Zhang Jingcheng, Nie Chenwei, Tang Cuicui, Zhao Jinling, Huang Linsheng. Remote sensing monitoring of wheat powdery mildew based on AdaBoost model combining mRMR algorithm[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017, 33(5): 162-169. DOI: 10.11975/j.issn.1002-6819.2017.05.024 |
[4] | Shen Wenying, Li Yingxue, Feng Wei, Zhang Haiyan, Zhang Yuanshuai, Xie Yingxin, Guo Tiancai. Inversion model for severity of powdery mildew in wheat leaves based on factor analysis-BP neural network[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2015, 31(22): 183-190. DOI: 10.11975/j.issn.1002-6819.2015.22.025 |
[5] | He Liang, Zhao Gang, Jin Ning, Zhuang Wei, Yu Qiang. Global sensitivity analysis of APSIM-Wheat parameters in different climate zones and yield levels[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2015, 31(14): 148-157. DOI: 10.11975/j.issn.1002-6819.2015.14.021 |
[6] | Yao Ning, Zhou Yuangang, Song Libing, Liu Jian, Li Yi, Wu Shufang, Feng Hao, He Jianqiang. Parameter estimation and verification of DSSAT-CERES-Wheat model for simulation of growth and development of winter wheat under water stresses at different growth stages[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2015, 31(12): 138-150. DOI: 10.11975/j.issn.1002-6819.2015.12.019 |
[7] | Tang Cuicui, Huang Wenjiang, Luo Juhua, Liang Dong, Zhao Jinling, Huang Linsheng. Forecasting wheat aphid with remote sensing based on relevance vector machine[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2015, 31(6): 201-207. DOI: 10.3969/j.issn.1002-6819.2015.06.027 |
[8] | Feng Wei, Wang Xiaoyu, Song Xiao, He Li, Wang Chenyang, Guo Tiancai. Hyperspectral estimation of canopy chlorophyll density in winter wheat under stress of powdery mildew[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2013, 29(13): 114-123. DOI: 10.3969/j.issn.1002-6819.2013.13.016 |
[9] | Feng Meichen, Xiao Lujie, Yang Wude, Ding Guangwei. Predicting grain yield of irrigation-land and dry-land winter wheat based on remote sensing data and meteorological data[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2010, 26(11): 183-188. |
[10] | Liu Liangyun, Song Xiaoyu, Li Cunjun, Qi La, Huang Wenjiang, Wang Jihua. Monitoring and evaluation of the diseases of and yield winter wheat from multi-temporal remotely-sensed data[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2009, 25(1): 137-143. |