Mapping corn and soybean cropped area with GF-1 WFV data
-
-
Abstract
Abstract: Planting area and spatial distribution information of crops are vital for guiding agricultural production, taking effective management measurements, and monitoring crop growth conditions. Numerous crop classification algorithms have been developed with rapid development of different remote sensing data. However, distinguishing of corn and soybean cropping areas still remains a difficult challenge due to their similar growth calendar and spectral characteristics. In this study, we tried to identify corn and soybean cropping area using random forest (RF) classifier which has been proved to be an effective method in land cover classification based on multi-temporal GF-1 WFV (wide field of view) imagery. We selected Nenjiang County, Heilongjiang Province in China as the study area which was called the Town of Soybean. Seven GF-1 WFV time-series images (April 14th, May 20th, June 26th, July 16th, August 26th, September 4th, and September 29th), from which the key growth stages could be extracted and the effects of clouds could be avoided, were chosen to classify main crops. First, we conducted atmospheric and geometric corrections on multi-temporal GF-1 imagery. In order to improve the accuracy of distinguishing corn and soybean cropping area, the parameters of RF classifier were input, which included normalized difference vegetation index (NDVI), wide dynamic range vegetation index (WDRVI), enhanced vegetation index (EVI), and normalized difference water index (NDWI), and hundreds of field sample points were collected in the field survey. Also, it’s necessary to evaluate the importance of different combination of these indices. The results showed that the combination of NDVI, WDRVI and NDWI achieved the best accuracy with the producer accuracy of 91.14% for soybean and 91.49% for corn, and with the user accuracy of 82.76% for soybean and 93.48% for corn. Then, the support vector machine (SVM) and maximum likelihood (ML) supervised classifiers were also used to map corn and soybean cropping areas; the classification results from the SVM and ML methods were compared with that from the RF approach with the Nenjiang Farm as the case study. The comparisons showed that the crop classification from the RF classifier had the higher accuracy than the others. Our results indicated that GF-1 data had particular advantages in mapping cropping area with its higher spatial and temporal resolutions, and could provide more effective remote sensing data during crop growth season. The temporal changes of main crops showed the best classifying date was September 29th when soybean has been harvested but corn hasn’t, and their vegetation indices showed the maximum difference. The multi-temporal imagery contributed to the separation of different spectral feature curves of different crops in the growth stages when crops had similar temporal variation profiles, which helped to decrease the omission and commission errors of the resultant mapping. The results also showed that the extracted spectral information of water and construction land was very different from vegetation and could be easily masked. Comparing the SVM and ML classifiers with RF classifier, the results suggested that RF classifier could successfully distinguish corn and soybean, and its overall accuracy reached up to 84.82%. This study provides important reference for crop mapping in other agricultural regions.
-
-