Bai Dan, Sun Shuzhen, Ren Peiqi, Xu Xianbo, Liang Zhidong. Temporal and spatial variation of wetting volume under sub-irrigation with vertical emitter[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2018, 34(7): 107-113. DOI: 10.11975/j.issn.1002-6819.2018.07.014
    Citation: Bai Dan, Sun Shuzhen, Ren Peiqi, Xu Xianbo, Liang Zhidong. Temporal and spatial variation of wetting volume under sub-irrigation with vertical emitter[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2018, 34(7): 107-113. DOI: 10.11975/j.issn.1002-6819.2018.07.014

    Temporal and spatial variation of wetting volume under sub-irrigation with vertical emitter

    • Abstract: The temporal and spatial variation of soil wetting characteristics and the influencing factors of vertical tube sub-irrigation were studied. In this article, the effects of working head, soil bulk density, initial soil moisture, diameter of vertical tube and buried depth of vertical tube on the spatial distribution of soil wetting were studied based on the experiment of indoor vertical tube emitter infiltration. In this experiment, the experiment was conducted using an orthogonal design method including 18 treatments. The orthogonal experimental design was adopted to arrange the influenced factors including water head, soil bulk density, initial soil moisture, diameter of vertical tube and buried depth of vertical tube (all the factors had 3 levels) and to study the characteristic parameters of wetted soil volume under sub-irrigation with vertical tube emitter. In the test, the pressure head was designed with different levels of 0.8, 1.1 and 1.4 m, and the soil bulk density was 1.32, 1.35 and 1.38 g/cm3. The initial soil moisture was 4%, 7% and 10%, and the diameter of the vertical tube was 4, 8 and 12 mm, the depth of vertical tube was 15, 20 and 25 cm. After the infiltration of started, observed and recorded the wetting front in the horizontal, upward and downward directions with the stopwatch, the corresponding wet body shape was obtained at different times. The cumulative infiltration into the soil was recorded by the scale on the Markov's bottle. The result showed that the shape of the wet body formed by the infiltration test of the vertical tube emitter was approximately an ellipsoid, and the horizontal diffusion radius and vertical infiltration distance of the wetting body increased with the infiltration time. At the early stage of irrigation, the wet front was basically consistent in the 3 directions, the distance between the downward movement and the upward and horizontal directions gradually increased with time, and finally the downward migration distance was the largest. According to the wet front migration distance in the 3 directions recorded at different times, the water head, soil bulk density, initial soil moisture, diameter of vertical tube emitter and buried depth of vertical tube in the 3 directions were established by using multiple regression and the coefficient of determination was above 0.85, which showed the reliable quantitative relationship between the migration distance of the wetting body and the influencing factors. According to the standardized regression coefficients, the infiltration time, water head and soil bulk density had a significant effect on the wetting body. The influence of the water head, the initial soil moisture, the diameter of the vertical pipe and the depth of the vertical tube on the wetting body was positive correlation. The effect of soil bulk density on the wetting body was negative. The 5 factors had different influential degree on the characteristic parameters of the wetting body. When the vertical tube emitter diameter, the initial moisture content and water head were increased, the wetting distance was increased. According to the quantitative relationship between the wet front migration distance and the influencing factors in different directions, the relationship between the wetting front migration rate and the influencing factors in different directions was established. It showed that the wetting front migration rate began to increase at the beginning of irrigation. With the increase of infiltration time, the wetting front migration rate gradually decreased. After infiltration for 200 min, infiltration gradually stabilized.
    • loading

    Catalog

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return