Ai Changsheng, Lin Hongchuan, Wu Delin, Feng Zhiquan. Path planning algorithm for plant protection robots in vineyard[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2018, 34(13): 77-85. DOI: 10.11975/j.issn.1002-6819.2018.13.010
    Citation: Ai Changsheng, Lin Hongchuan, Wu Delin, Feng Zhiquan. Path planning algorithm for plant protection robots in vineyard[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2018, 34(13): 77-85. DOI: 10.11975/j.issn.1002-6819.2018.13.010

    Path planning algorithm for plant protection robots in vineyard

    • To meet the requirements of accuracy and reliability of plant protection robot in ridge identification and route planning, also improve the working conditions of farmers, and achieve an unmanned operation purpose, an algorithm based on multi-support-vector proportioning weight of SVM (support vector machine) to identify the ridge line of vineyards, and the path planning of plant protection robots were proposed. The strategy first uses Kalman filter to pre-process coarse orchard data information obtained by Lidar scanning. According to the principle that Kalman filter complies with Gaussian distribution, the prior point between 2 adjacent points was taken as the prior state, and the latter point was used as the observed point to obtain posteriori state estimation, so as to realize data integration and analysis. With its good system state estimation characteristics, the collected data can be used to judge the trend of the ridge line, so as to correct the noise outliers in the data and improve the readability of the data. Then according to the characteristics of the vineyard branch ridge and the characteristics of ridges line with clearly separable spacing, and corresponding to the situation that the ridge line on both sides can be completely separated, the method was combined with SVM linear classification. With the unique advantages of the classification and due to that SVM can search the unique segmentation hyperplane, the maximum interval and segmentation hyperplane, classification margins in the ridge environment could be gotten. The split hyperplane obtained at this time would be between ridge lines. However, there was a big deviation from the angle of the direction of the ridge line and the horizontal distance. It could not meet the precise operation requirements of plant protection robots. It needed further data processing and analysis. In order to obtain accurate position of the center of ridge line, finally, the relative weights were assigned to the sample points of each ridge based on the geometric interval relationship between the sample points on both sides of the ridge and the corresponding SVM classification marginal line. The classification marginal line was reformed according to the number of sample points and the relative weights. According to the condition of the product of the interval relationship between each sample point and the classification margin, their relative weight must be consistent with the quality value of classification margin. The random sampling consistency iteration method (RANSAC) would avoid the error of cost estimate, and could estimate the parameters of the mathematical model from a group of observed data with outliers, so as to obtain the predicted safety location of the ridge. Although the pre-estimated security location of ridge line was not necessarily consistent with the actual location of the vineyard ridge, navigation line could be obtained indirectly by the security ridge line on both sides and the principle of angle bisector which could meet the requirements of precision operation of plant protection robot. Operation guidance line for plant protection robot could be acquired. After a number of actual samples were tested, the average angular deviation between the fitted navigation line and the actual ridge centerline was 0.72°, and the average distance deviation of the relative plant protection robot was 4.22 mm. Experimental results showed that this algorithm could effectively identify and locate the navigation route needed by the plant protection robot. The fitted navigation line could meet the requirements of accurate operation of the plant protection robot in the vineyard. However, the redundancy of the algorithm was relatively large, and the time required to process data in a single time was about 2.05 s. With the accelerated calculation speed of the processor in the future, the algorithm provided in the article can provide a reference solution for such a problem.
    • loading

    Catalog

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return