Citation: | Cai Jianrong, Lu Yue, Bai Junwen, Sun Li, Xiao Hongwei. Three-dimensional imaging of morphological changes of potato slices during drying[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2019, 35(1): 278-284. DOI: 10.11975/j.issn.1002-6819.2019.01.034 |
[1] |
苏丹,李树君,赵凤敏,等. 农产品联合干燥技术的研究进展[J]. 农机化研究,2014,36(11):236-240.Su Dan, Li Shujun, Zhao Fengmin, et al. Advances in the combined drying technology of agricultural products[J] . Journal of Agricultural Mechanization Research, 2014, 36(11): 236-240. (in Chinese with English abstract)
|
[2] |
吴海虹,朱道正,卞欢,等. 农产品干燥技术发展现状[J]. 现代农业科技,2016(14):279-281.
|
[3] |
白竣文,田潇瑜,刘宇婧,等. 大野芋薄层干燥特性及收缩动力学模型研究[J]. 中国食品学报,2018,18(4): 124-130.
|
[4] |
Nadian M H, Rafiee S, Aghbashlo M, et al. Continuous real-time monitoring and neural network modeling of apple slices color changes during hot air drying[J]. Food & Bioproducts Processing, 2015, 94: 263-274.
|
[5] |
Sampson D J, Chang Y K, Rupasinghe H P V, et al. A dual-view computer-vision system for volume and image texture analysis in multiple apple slices drying[J]. Journal of Food Engineering, 2014, 127(4): 49-57.
|
[6] |
Ortiz-García-Carrasco B, Ya?ez-Mota E, Pacheco-Aguirre F M, et al. Drying of shrinkable food products: Appraisal of deformation behavior and moisture diffusivity estimation under isotropic shrinkage[J]. Journal of Food Engineering, 2015, 144: 138-147.
|
[7] |
Onwude D I, Hashim N, Abdan K, et al. Combination of computer vision and backscattering imaging for predicting the moisture content and colour changes of sweet potato (Ipomoea batatas, L.) during drying[J]. Computers & Electronics in Agriculture, 2018, 150: 178-187.
|
[8] |
沈跃,徐慧,刘慧,等. 基于K-means和近邻回归算法的Kinect植株深度图像修复[J]. 农业工程学报,2016,32(19):188-194.Shen Yue, Xu Hui, Liu Hui, et, al. Kinect scanning plant depth image restoration based on K-means and K-nearest neighbor algorithms[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2016, 32(19): 188-194. (in Chinese with English abstract)
|
[9] |
邹广群. 基于TOF相机的深度图增强算法研究[D]. 青岛: 青岛大学,2016.
|
[10] |
赵志平,陈雷月. 基于深度传感器图像分割技术的研究[J]. 信息技术,2014 (1):109-112.Zhao Zhiping, Chen Leiyue. Research on image segment technique based on Kinect[J]. Information Technology, 2014(1): 109-112. (in Chinese with English abstract)
|
[11] |
许常蕾,王庆,陈洪,等. 基于体感交互的仿上肢采摘机器人系统设计与仿真[J]. 农业工程学报,2017,33(增刊1):49-55.Xu Changlei, Wang Qing, Chen Hong, et al. Design and simulation of artificial limb picking robot based on somatosensory interaction[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017, 33(Supp.1): 49-55.(in Chinese with English abstract)
|
[12] |
Meng Ming, Yang Fangbo, She Qingshan, et al. Human motion detection based on the depth image of Kinect[J]. Chinese Journal of Scientific Instrument, 2015, 36(2): 386-393.
|
[13] |
Harte J M, Golby C K, Acosta J, et al. Chest wall motion analysis in healthy volunteers and adults with cystic fibrosis using a novel Kinect-based motion tracking system[J]. Medical & Biological Engineering & Computing, 2016, 54(11): 1631-1640.
|
[14] |
Sun Y, Li C, Li G, et al. Gesture recognition based on Kinect and sEMG signal fusion[J]. Mobile Networks & Applications, 2018(1): 1-9.
|
[15] |
Rosa-Pujazón A, Barbancho I, Tardón L J, et al. Fast-gesture recognition and classification using Kinect: An application for a virtual reality drumkit[J]. Multimedia Tools & Applications, 2016, 75(14): 8137-8164.
|
[16] |
Gianaria E, Grangetto M, Balossino N. Kinect-based gait analysis for people recognition over time[C]// International Conference on Image Analysis and Processing. Catania: Springer, 2017: 648-658.
|
[17] |
付代昌,徐立鸿,李大威,等. 基于Kinect的温室番茄盆栽茎干检测与分割[J]. 现代农业科技,2014(3):336-338.
|
[18] |
沈跃,徐慧,刘慧,等. 基于Kinect传感器的温室植株绿色与深度检测方法[J]. 中国农机化学报,2016,37(8): 155-161.
|
[19] |
沈跃,朱嘉慧,刘慧,等. 基于深度和彩色双信息特征源的Kinect植物图像拼接[J]. 农业工程学报,2018,34(5):176-182.Shen Yue, Zhu Jiahui, Liu Hui, et, al. Plant image mosaic based on depth and color dual information feature source from Kinect[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2018, 34(5): 176-182. (in Chinese with English abstract)
|
[20] |
肖珂,高冠东,马跃进. 基于Kinect视频技术的葡萄园农药喷施路径规划算法[J]. 农业工程学报,2017,33(24):192-199.Xiao Ke, Gao Guandong, Ma Yuejin. Pesticide spraying route planning algorithm for grapery based on Kinect video technique[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017, 33(24): 192-199. (in Chinese with English abstract)
|
[21] |
闻陶,朱跃钊,孙庆梅,等. 马铃薯吸附干燥特性及模型拟合[J]. 生物加工过程,2006,4(3):56-61.
|
[22] |
Hafezi N,Sheikhdavoodi M J,Sajadiye S M,et al. Shrinkage characteristic of potato slices based on computer vision[J]. Agricultural Engineering International Cigr Journal, 2015, 17(3): 287-295.
|
[23] |
夏春华,施滢,尹文庆. 基于TOF深度传感的植物三维点云数据获取与去噪方法[J]. 农业工程学报,2018,34(6):168-174.Xia Chunhua, Shi Ying, Yin Wenqing. Obtaining and denoising method of three-dimensional point cloud data of plants based on TOF depth sensor[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2018, 34 (6): 168-174.(in Chinese with English abstract)
|
[24] |
Takenaka H, Wada T, Oike H, et al. Bilateral filtering based depth image correction consistent with color image captured by Kinect[J]. Technical Report of Ieice Prmu, 2012, 112: 311-316.
|
[25] |
徐胜勇,黄伟军,周俊,等. 使用Kinect传感器的油菜叶片面积测量方法[J]. 中国油料作物学报,2017,39(1):55-59.
|
[26] |
刘小丹,张淑娟,贺虎兰,等. 红枣微波-热风联合干燥特性及对其品质的影响[J]. 农业工程学报,2012,28(24):280-286.Liu Xiaodan, Zhang Shujuan, He Hulan, et al. Drying characteristics and its effects on quality of jujube treated by combined microwave-hot-air drying[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2012, 28(24): 280-286.(in Chinese with English abstract)
|
[27] |
朱文魁,徐德龙,周雅宁,等. 基于数字图像分析法的片烟干燥收缩特性研究[J]. 河南农业科学,2014,43(7):160-164.
|
[28] |
徐娓,丁静,赵义,等. 多孔物料干燥中物料体积的收缩特性[J]. 华南理工大学学报:自然科学版,2006,34(8):61-65.
|
[29] |
Wang J, Law C L, Nema P K, et al. Pulsed vacuum drying enhances drying kinetics and quality of lemon slices[J]. Journal of Food Engineering, 2018, 224: 129-138.
|
[30] |
王丽红,高振江,张茜,等. 加工番茄收缩特性的试验研究[J]. 食品科技,2011(8):102-105.
|
[31] |
Mayor L, Sereno A M. Modelling shrinkage during convective drying of food materials: A review[J]. Journal of Food Engineering, 2004, 61(3): 373-386.
|
[32] |
沈文超. 不规则扁平粒状物表面平整度识别与分选方法的研究[D]. 苏州:苏州大学,2010.
|
1. |
刘永杰,陶乐仁,冯东昱. 冷风干燥鲫鱼干燥特性及品质分析. 食品与发酵工业. 2024(19): 223-228 .
![]() | |
2. |
唐诗,陆涛,黄志昌. 基于红外检测仪的三维激光扫描成像输入系统. 激光杂志. 2022(12): 216-220 .
![]() | |
3. |
刘海波,王佳倩,李耀,金雪冻,朱静,王辉,刘雄. 马铃薯片热泵干燥动力学研究及其干燥工艺优化. 中国粮油学报. 2022(10): 106-115 .
![]() | |
4. |
曲文娟,凡威,熊婷,郭甜甜,师俊玲,马海乐,潘忠礼. 核桃干燥过程的低场核磁共振横向驰豫分析. 现代食品科技. 2021(09): 145-154+324 .
![]() | |
5. |
刘德成,郑霞,肖红伟,姚雪东,单春会,常安太,李义璨,李祥雨. 红枣片冷冻-红外分段组合干燥工艺优化. 农业工程学报. 2021(17): 293-302 .
![]() | |
6. |
李雅琪,张鹏起,蔡健荣,白竣文,孙力. 马铃薯薄片干燥过程热变形量分析. 食品科学. 2021(23): 123-128 .
![]() | |
7. |
效碧亮,彭丹,冉学贝,甘瑞,刘晓风. 百合真空旋蒸干燥工艺优化. 真空科学与技术学报. 2020(05): 405-415 .
![]() | |
8. |
渠琛玲,汪紫薇,王雪珂,王殿轩. 基于低场核磁共振的热风干燥过程花生仁含水率预测模型. 农业工程学报. 2019(12): 290-296 .
![]() |