Field wheat ear counting automatically based on improved K-means clustering algorithm
-
-
Abstract
Abstract: The amount of wheat ears per unit area is an important parameter for assessing wheat yield and wheat planting density. Generally, phenotype parameters should be obtained by manual count technique which is time-consuming and needs great effort. Aiming at the traditional image segmentation method based on color feature, texture feature and Haar feature, in this paper, we proposed an improved K-means algorithm for estimating the number of wheat ears. This method established a direct mapping relationship from the low-level features of the image to the number of wheat ears in the image through the color feature so that the target did not need to be segmented or detected. This type of method was more suitable for complex lighting and dense wheat ears, and had higher computational efficiency than counting methods based on image segmentation. This method made full use of the color feature of wheat ear image, took the area feature of local region extracted from local region as the basis of wheat ear judgment, and used the number of sub-regions in clustering region as the estimation value of wheat ear number, thus avoiding the task of target detection and location, and greatly improving the accuracy of Wheat ear counting. According to classification results of K-means method, the wheat ear image was divided into three regions. The green area pixel value representing the wheat eat region was set to 255, the pixel value of other areas was set to 0, so the binary image of wheat ears was obtained. Most of the binarized areas in the image were wheat ears, and a small part of the binarized area that was too small or too large was caused by the leaves. Following the steps were used to count wheat ears: 1) extracting the connected regions of the binary image and labeling them; 2) calculating the area of each connected region, the area was represented by the number of pixels in the region; 3) using the following method to filter out the connected region where the area was too small or too large; 4) finally, the number of wheat ears was obtained by counting the retained binary regions. This method established a direct classification relation from the image color feature of the lower layer to the image containing wheat ears so that the image did not need to be segmented or detected. Based on color feature clustering, this method could estimate the number of wheat ears in local area of space, and it was more scalable without training. The average prediction precision of the total wheatear number in a wheatear image for 12 wheatear images was 94.69%. And the Statistical error of the total wheatear number was between 2.17% and 7.41%, the average statistical error was 5.31%. The statistical experiment results showed that the accuracy of this algorithm to wheat ear counting was better than the traditional method based on image color feature and texture feature.
-
-