Shi Xiaoliang, Wu Mengyue, Zhang Na. Characteristics of water use efficiency of typical terrestrial ecosystems in China and its response to climate factors[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2020, 36(9): 152-159. DOI: 10.11975/j.issn.1002-6819.2020.09.017
    Citation: Shi Xiaoliang, Wu Mengyue, Zhang Na. Characteristics of water use efficiency of typical terrestrial ecosystems in China and its response to climate factors[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2020, 36(9): 152-159. DOI: 10.11975/j.issn.1002-6819.2020.09.017

    Characteristics of water use efficiency of typical terrestrial ecosystems in China and its response to climate factors

    • Abstract: Water Use Efficiency (WUE) refers to the ratio of water used in plant metabolism over water lost in evapotranspiration, indicating carbon-water coupling in terrestrial ecosystem and its response to global change. It is of great significance to clarify the long-term variation characteristics and influencing factors of WUE for the study of carbon and water cycles and the rational utilization of water resources. This study aims to estimate the vegetation WUE of a research site, particularly on the annual and interannual variation characteristics of WUE, and to establish the response relationship between WUE and key meteorological factors. The data used in this paper mainly include the flux and meteorological information from eight sites in China from January 2003 to December 2010. Unified quality control and interpolation methods were then used to pre-process the flux data. The daily flux and meteorological data were combined into 8-day data sets in each site. Pearson coefficient was used to analyze the correlation between vegetation WUE and Gross Primary Productivity (GPP), ET, average temperature, precipitation, and relative humidity factors. The characteristics and influencing factors of WUE were analyzed and compared in different ecosystem. The results showed that: 1)WUE fluctuated greatly in the whole year without obvious regularity in Qianyanzhou, Xishuangbanna and Dinghushan sites which locate in the tropical monsoon climate region, while WUE showed obvious seasonal variation characteristics in the other five sites, all of which increased significantly from April to July, and reached the maximum during the peak period (July to August), and then WUE decreased gradually from August to October. From November to February of the following year, WUE reached zero. 2) From 2003 to 2010, the annual WUE of alpine meadow (Damxung) was the lowest (0.18 g/kg), whereas, that of tropical rainforest (Xishuangbanna) was the highest (4.20 g/kg). The WUE increased annually in the grassland (Inner Mongolia), broad-leaved evergreen forest (Dinghu Mountain), farmland (Yucheng), alpine meadow (Damxung), and alpine meadow (Haibei), whereas, the decreasing trend occurred in the coniferous forest (Qianyanzhou), tropical rainforest (Xishuangbanna), deciduous broad-leaved and coniferous mixed forests (Changbai Mountain). 3) In the 8-day time scale, there was positively correlation between temperature and WUE in alpine meadow, farmland and grassland ecosystem, whereas there was the negatively correlation between temperature and WUE in forest ecosystem. And the negative correlation between WUE and temperature in coniferous forest ecosystem (R=-0.607, P<0.01) was higher than that in evergreen broad-leaved forest and coniferous broad-leaved mixed forest ecosystem. Compared with forest and farmland ecosystem, WUE in alpine meadow and grassland ecosystem had a higher correlation with relative humidity and precipitation; 4) In different ecosystem, the various approaches were proposed to enhance WUE of terrestrial ecosystem for the sustainable development of agriculture, forestry and animal husbandry. Soil management regulation and canopy pruning can improve water use efficiency in the case of forest ecosystem. In farmland ecosystem, water use efficiency can be elevated from irrigation mode and crop breeding. In alpine meadow and grassland ecosystem, man-made grass, rest grazing and area rotation grazing can be used to enhance grassland carbon sink, further to improve water use efficiency. The findings can provide promising potentials to alleviate water shortage against the background of global warming.
    • loading

    Catalog

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return