• EI
    • CSA
    • CABI
    • 卓越期刊
    • CA
    • Scopus
    • CSCD
    • 核心期刊
Liu Yangyang, Ru Yu, Liu Bin, Chen Xuyang. Algorithm for planning full coverage route for helicopter aerial spray[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2020, 36(17): 73-80. DOI: 10.11975/j.issn.1002-6819.2020.17.009
Citation: Liu Yangyang, Ru Yu, Liu Bin, Chen Xuyang. Algorithm for planning full coverage route for helicopter aerial spray[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2020, 36(17): 73-80. DOI: 10.11975/j.issn.1002-6819.2020.17.009

Algorithm for planning full coverage route for helicopter aerial spray

More Information
  • Received Date: May 19, 2020
  • Revised Date: August 04, 2020
  • Published Date: August 31, 2020
  • At present, there is redundancy in the route of helicopter spray, which leads to waste of fuel and pesticides, and serious environmental pollution and high spray cost. In order to improve the aerial spray efficiency and avoid the phenomenon of overspray, missed spray and respray in the process of aerial spray, and solve the problem of inaccurate coverage was caused, the optimal full coverage route planning method was proposed and the corresponding device was developed. Firstly, Based on the analysis of previous research on the full coverage path planning technology of aerial spray, full coverage spray route planning for R44 helicopter was studied, a set of shortest spray voyage and the most accurate full coverage route planning algorithm for aerial spray was developed. The optimal full coverage route planning method showed that the longer the spray route, the larger the spray area and the larger the pesticide consumption. Therefore, under the premise of full coverage, the shortest distance of spray route can ensure the most accurate coverage. Under the premise of without repeated spray, to ensure full coverage of the spray area, the spray route needs to be beyond the boundary of the spray area. Moreover, the excess spray area was reduced by reducing the length of spray route outside the boundary. Based on the principle of full area coverage, the spray voyage of outside the spray area was calculated and analyzed to obtain the shortest spray voyage calculation formula on the premise of full coverage, and draw the conclusion that the spray voyage was shorter when the boundary of the spraying region was parallel to the x-axis of the coordinate system. Furthermore, each boundary was taken as the x-axis to establish the coordinate system, and the shortest coordinate system of spray voyage could be obtained through the calculation formula of spray voyage. Then combined with the full coverage route planning method, the optimal full coverage routes according to different operating environments were achieved. Therefore, under the premise of full coverage of the spraying area, the spray voyage was the shortest and the coverage was the most accurate. Real-time monitoring of flight track was realized through designing of software and hardware, and information was transmitted bidirectional between plane and mobile terminal through OneNet IoT platform. Seven full coverage spray experiments with different course were carried out on three different terrain sites with different areas of rectangle, arbitrary quadrilateral and arbitrary polygon. The experiments results showed that the spray voyages of the planned course was the shortest and the redundant coverage was the least among the three test sites. The distance can be shortened by 4.920, 6.903, 59.913 km than other courses spray voyages in the three test sites; the minimum redundant coverage was 2.08%, 7.17%, and 0.57%, respectively. With the increase of spray area, the shorter the voyage was, the less redundant coverage was. And the redundant coverage of regular terrain of route planning was obviously less than that of irregular terrain. The full coverage route planning algorithm proposed in this paper can provide theoretical support for the development of aerial route planning technology and provides guidance for actual spray operations.
  • [1]
    杨银布. 林业资源管理对林区可持续发展的影响[J]. 现代园艺,2019(10):152-153.
    [2]
    赵新邦. 林业资源管理存在的问题及解决措施分析[J]. 现代农业2019(04):72-73.
    [3]
    周志艳,臧英,罗锡文,等. 中国农业航空植保产业技术创新发展战略[J]. 农业工程学报,2013,29(24):1-10.Zhou Zhiyan, Zang Ying, Luo Xiwen, et al. Technology innovation development strategy on agricultural aviation industry for plant protection in China[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2013, 29(24): 1-10. (in Chinese with English abstract)
    [4]
    詹春明. 造林工程病虫害特点及处理办法[J]. 绿色科技,2016(5):123-124.
    [5]
    张东彦,兰玉彬,陈立平,等. 中国农业航空施药技术研究进展与展望[J]. 农业机械学报,2014,45(10):53-59.Zhang Dongyan, Lan Yubin, Chen Liping, et al. Current status and future trends of agricultural aerial spraying technology in China [J]. Transactions of the Chinese Society for Agricultural Machinery, 2014, 45(10): 53-59. (in Chinese with English abstract)
    [6]
    陈盛德,兰玉彬,李继宇,等. 小型无人直升机喷雾参数对杂交水稻冠层雾滴沉积分布的影响[J]. 农业工程学报,2016,32(17):40-46.Chen Shengde, Lan Yubin, Li Jiyu, et al. Effects of small unmanned helicopter spray parameters on the distribution of canopy droplets in hybrid rice[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2016, 32(17): 40-46. (in Chinese with English abstract)
    [7]
    Lan Y B, Chen S D. Current status and trends of plant protection UAV and its spraying technology in China[J]. Int J Prec Agric Aviat, 2018, 1(1): 1-9.
    [8]
    Pathak R, Barzin R, Bora G C. Data-driven precision agricultural applications using field sensors and unmanned aerial vehicle[J]. International Journal of Precision Agricultural Aviation, 2018, 1(1):19-23.
    [9]
    茹煜,金兰,贾志成,等. 无人机静电喷雾系统设计及试验[J]. 农业工程学报,2015,31(8):42-47.Ru Yu, Jin Lan, Jia Zhicheng. Design and experiment on electrostatic spraying system for unmanned aerial vehicle[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2015, 31(8): 42-47. (in Chinese with English abstract)
    [10]
    陈盛德,兰玉彬,李继宇,等. 航空喷施与人工喷施方式对水稻施药效果比较[J]. 华南农业大学学报,2017,38(4):103-109.Chen Shengde, Lan Yubin, Li Jiyu, et al. Comparison of the pesticide effects of aerial and artificial spray applications for rice[J]. Journal of South China Agricultural University, 2017, 38(4): 103-109. (in Chinese with English abstract)
    [11]
    周志艳,明锐,臧禹,等. 中国农业航空发展现状及对策建议[J]. 农业工程学报,2017,33(20):1-13.Zhou Zhiyan, Ming Rui, Zang Yu, et al. Development status and countermeasures of agricultural aviation in China[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017, 33(20): 1-13. (in Chinese with English abstract)
    [12]
    李会,李玉荣,许斐斐,等. R44直升机飞防春尺蠖技术研究[J]. 山东林业科技,2014,44(5):82-85.Li Hui, Li Yurong, Xu Feifei, et al. R44 Helicopte control apocheima cinerari technology research. Journal of Shandong Forestry Science and Technology, 2014, 44(5): 82-85. (in Chinese with English abstract)
    [13]
    邓铁军,白先进,廖宪成,等. R44型直升机喷雾防治柑橘木虱的效果初报[J]. 植物保护,2018,44(4):226-229.Den Teijun, Bai Xianjin, Liao Xiancheng, et al. Control effect of spraying pesticides by R44 helicopter against diaphorina citri[J]. Plant Protection, 2018, 44(4): 226-229. (in Chinese with English abstract)
    [14]
    包瑞,茹煜,朱传银,等. 固定翼飞机喷雾作业雾滴飘移规律研究[J]. 林业工程学报,2018,3(2):129-135.Bao Rui, Ru Yu, Zhu Chuanyin, et al. Study on spray droplet drift pattern based on fixed-wing aircraft[J]. Journal of Forestry Engineering, 2018, 3(2): 129-135. (in Chinese with English abstract)
    [15]
    Jacopo P, Salvatore Filippo D G, Edoardo F, et al. A flexible unmanned aerial vehicle for precision agriculture[J]. Precision Agriculture, 2012, 13(4): 517-523.
    [16]
    秦维彩,薛新宇,周立新,等. 无人直升机喷雾参数对玉米冠层雾滴沉积分布的影响[J]. 农业工程学报,2014,30(5):50-56.Qin Weicai, Xue Xinyu, Zhou Lixin, et al. Effects of spraying parameters of unmanned aerial vehicle on droplets deposition distribution of maize canopies[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2014, 30(5): 50-56. (in Chinese with English abstract)
    [17]
    张铁,董祥,尹素珍,等. 轻便型高地隙喷杆喷雾机大豆田间施药试验[J]. 农业机械学报,2016,47(S):182-188.Zhang Tie, Dong Xiang, Yin Suzhen, et al. Spraying performance of lightweight high clearance boom sprayer in soybean field[J]. Transactions of the Chinese Society for Agricultural Machinery, 2016, 47(S): 182-188. (in Chinese with English abstract)
    [18]
    李继宇,兰玉彬,施叶茵. 旋翼无人机气流特征及大田施药作业研究进展[J]. 农业工程学报,2018,34(12):104-118.Li Jiyu, Lan Yubin, Shi Yeyin. Research progress on airflow characteristics and field pesticide application system of rotary-wing UAV[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2018, 34(12): 104-118. (in Chinese with English abstract)
    [19]
    Yao P, Wang H, Su Z. Cooperative path planning with applications to target tracking and obstacle avoidance for multi-UAVs[J]. Aerospace Science & Technology, 2016, 54: 10-22.
    [20]
    Ramana M V, Varma S A, Kothari M. Motion planning for a fixed-wing UAV in urban environments[J]. IFAC-Papers Online, 2016, 49(1): 419-424.
    [21]
    谭雁英,唐伟贤. 基于参考点法的无人机跟踪目标导引策略设计[J]. 西北工业大学学报,2020,38(1):176-182.Tan Yanying, Tang Weixian. Guidance strategy for UAV tracking target based on reference point guidance method[J]. Journal of Northwestern Polytechnical University, 2020, 38(1): 176-182. (in Chinese with English abstract)
    [22]
    刘芳,孙亚楠,王洪娟,等. 基于残差学习的自适应无人机目标跟踪算法[J/OL]. 北京航空航天大学学报:1-12 [2020-03-27]. https://doi.org/10.13700/j.bh.1001-5965.2019.0551.Liu Fang, Sun Yanan, Wang Hongjuan, et al. Adaptive UAV target tracking algorithm based on residual learning[J/OL]. Journal of Beijing University of Aeronautics and Astronautics: 1-12 [2020-03-27]. https://doi.org/ 10.13700/j.bh.1001-5965.2019.0551. (in Chinese with English abstract)
    [23]
    汪沛,罗锡文,周志艳,等. 基于微小型无人机的遥感信息获取关键技术综述[J]. 农业工程学报,2014,30(18):1-12.Wang Pei, Luo Xiwen, Zhou Zhiyan, et al. Key technology for remote sensing information acquisition based on micro UAV[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2014, 30(18): 1-12. (in Chinese with English abstract)
    [24]
    曹光乔,张庆凯,陈聪,等. 基于多目标优化的飞防队作业调度模型研究[J]. 农业机械学报,2019,50(11):92-101.Cao Guangqiao, Zhang Qingkai, Chen Cong, et al. Scheduling model of UAV plant protection team based on multi-objective optimization[J].Transactions of the Chinese Society for Agricultural Machinery, 2019, 50(11): 92-101. (in Chinese with English abstract)
    [25]
    Popescu D, Stoican F, Ichim L. Control and optimization of UAV trajectory for aerial coverage in photogrammetry applications[J]. Advances in Electrical and Computer Engineering, 2016, 16( 3) : 99-106.
    [26]
    Marina Torres, David A. Pelta, José L, et al. Coverage path planning with unmanned aerial vehicles for 3D terrain reconstruction[J]. Expert Systems with Applications, 2016, 55: 441-451.
    [27]
    徐博,陈立平,谭彧,等. 多架次作业植保无人机最小能耗航迹规划算法研究[J]. 农业机械学报,2015,46(11):36-42.Xu Bo, Chen Liping, Tan Yu, et al. Path planning based on minimum energy consumption for plant protection UAVs in sorties[J]. Transactions of the Chinese Society for Agricultural Machinery, 2015, 46(11): 36-42. (in Chinese with English abstract)
    [28]
    徐博,陈立平,谭彧,等. 基于无人机航向的不规则区域作业航线规划算法与验证[J]. 农业工程学报,2015,31(23):173-178.Xu Bo, Chen Liping, Tan Yu, et al. Route planning algorithm and verification based on UAV operation path angle in irregulararea[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2015, 31(23): 173-178. (in Chinese with English abstract)
    [29]
    黄小毛,张垒,Tang Lie,等. 复杂边界田块旋翼无人机自主作业路径规划[J]. 农业机械学报,2020,51(3):34-42.Huang Xiaomao, Zhang Lei, Tang Lie, et al. Path planning for autonomous operation of a drone in fields with complex boundaries[J]. Transactions of the Chinese Society for Agricultural Machinery, 2020, 51(3): 34-42. (in Chinese with English abstract)
    [30]
    Yao W X, Lan Y B, Wen S, et al. Evaluation of droplet deposition and effect of variable-rate application by a manned helicopter with AG-NAV Guía system [J]. International Journal of Agricultural and Biological Engineering, 2019, 12(1): 172-178.
    [31]
    Debiao H, Zeadally S, An analysis of RFID authentication schemes for internet of things in healthcare environment using elliptic curve cryptography[J]. Ieee Internet of Things Journal, 2015, 2(1): 72-83.
    [32]
    Sebastian S, Petors S. Wireless technologies for smart agricultural monitoring using internet of things devices with energy harvesting capabilities[J]. Computers and Electronics in Agriculture, 2020, 172: 105338.
    [33]
    Liu Yalin, Dai Hongning,Wang Qubeijian, et al. Unmanned aerial vehicle for internet of everything: Opportunities and challenges[J]. Computer Communications, 2020, 155: 66-83.
    [34]
    Zhou Yushan, Liu Liu, Xie Chengjun, et al. An effective automatic system deployed in agricultural internet of things using multi-context fusion network towards crop disease recognition in the wild[J]. Applied Soft Computing Journal, 2020, 89: 106128.
    [35]
    张瑞瑞,李杨,伊铜川,等. 有人直升机变量施药控制系统的设计与试验[J]. 农机化研究,2017,39(10):124-127.Zhang Ruirui, Li Yang, Yi Tongchuan, et al. Design and experiments of control system of variable pesticide application for manned helicopter[J]. Journal of Agricultural Mechanization Research, 2017, 39(10): 124-127. (in Chinese with English abstract)

Catalog

    Article views (805) PDF downloads (383) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return