Citation: | Xu Lujiang, Shi Chenchen, He Zijian, Liu Yang, Wu Shenghong, Fang Zhen. Research advances in pyrolysis of softwood lignin-based monomers[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2020, 36(18): 213-221. DOI: 10.11975/j.issn.1002-6819.2020.18.026 |
[1] |
Scarlat N, Dallemand J F, Monforti-Ferrario F, et al. The role of biomass and bioenergy in a future bioeconomy: Policies and facts[J]. Environmental Development, 2015, 15: 3-34.
|
[2] |
唐卫军,肖波,杨家宽,等. 生物质转化利用技术研究进展[J]. 再生资源研究,2003,4(4):30-32.Tang Weijun, Xiao Bo, Yang Jiakuan, et al. Research development of biomass conversion technology[J]. Recyclable Resources and Circular Economy, 2003, 4(4): 30-32. (in Chinese with English abstract)
|
[3] |
Ragauskas A J, Beckham G T, Biddy M J, et al. Lignin valorization: Improving lignin processing in the biorefinery[J]. Science, 2014, 344: 709.
|
[4] |
Sixta H, Potthast A, Krotschek A W. Chemical Pulping Processes: Sections 4.1-4.2. 5. Handbook of Pulp, Weinheim, 2006: 109-229.
|
[5] |
Xu C P, Arancon R A D, Labidi J, et al. Lignin depolymerisation strategies: Towards valuable chemicals and fuels[J]. Chemical Society Reviews, 2014, 43: 7485-7500.
|
[6] |
Xu L J, Zhang Y, Fu Y. Advances in upgrading lignin pyrolysis vapors by ex situ catalytic fast pyrolysis[J]. Energy Technology, 2017, 5(1): 30-51.
|
[7] |
岳金方,应浩. 工业木质素的热裂解试验研究[J]. 农业工程学报,2006,22(增刊1):125-128. Yue Jinfang, Ying Hao. Experimental study on industriallignin pyrolysis[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2006, 22(Supp.1): 125-128. (in Chinese with English abstract)
|
[8] |
Pandey M P, Kim C S. Lignin depolymerization and conversion: A review of thermochemical methods[J]. Chemical Engineering Technology, 2011, 34(1): 29-41.
|
[9] |
Kim J Y, Heo S, Choi J W. Effects of phenolic hydroxyl functionality on lignin pyrolysis over zeolite catalyst[J]. Fuel, 2018, 232: 81-89.
|
[10] |
Lei M, Wu S, Liang J, et al. Comprehensive understanding the chemical structure evolution and crucial intermediate radical in situ observation in enzymatic hydrolysis/mild acidolysis lignin pyrolysis[J]. Journal of Analytical and Applied Pyrolysis, 2019, 138: 249-260.
|
[11] |
Hu L H, Pan H, Zhou Y H, et al. Methods to improve lignin's reactivity as a phenol substitute and as replacement for other phenolic compounds: A brief review[J]. Bioresources, 2011, 6: 3515-3525.
|
[12] |
Li J, Bai X, Fang Y, et al. Comprehensive mechanism of initial stage for lignin pyrolysis[J]. Combustion and Flame, 2020, 215: 1-9.
|
[13] |
马中青,王浚浩,黄明,等. 木质素种类和催化剂添加量对热解产物的影响[J]. 农业工程学报,2020,36(1):274-282.Ma Zhongqing, Wang Junhao, Huang Ming, et al. Effects of lignin species and catalyst addition on pyrolysis products[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2020, 36(1): 274-282. (in Chinese with English abstract)
|
[14] |
王荀,吕永康. 愈创木酚催化氢解制取苯酚研究进展[J]. 现代化工,2019,39(4):36-41.Wang Xun, Lv Yongkang. Advances in phenol production through catalytic hydrogenolysis of guaiacol[J]. Modern Chemical Industry, 2019, 39(4): 36-41. (in Chinese with English abstract)
|
[15] |
谭雪松,庄新姝,吕双亮,等. 钯炭催化木质素模型化合物愈创木酚加氢脱氧制备烷烃[J]. 农业工程学报,2012,28(21):193-199.Tan Xuesong, Zhuang Xinshu, Lü Shuangliang, et al. Hydrodeoxygenation of guaiacol as lignin model compound for alkanes preparation with palladium-carbon catalysts[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2012, 28(21): 193-199. (in Chinese with English abstract)
|
[16] |
杨宇,李妞,王爽. 愈创木酚的制备研究进展[J]. 工业催化,2017,25(4):1-5.Yang Yu, Li Niu, Wang Shuang. Research progress in guaiacol preparation[J]. Industrial Catalysis. 2017, 25(4): 1-5. (in Chinese with English abstract)
|
[17] |
李光明,刘有智,张巧玲,等. 愈创木酚制备方法与进展[J]. 化工中间体,2010,5:20-25.Li Guangming, Liu Youzhi, Zhang Qiaoling, et al. Research progress of the preparation method of guaiacol[J]. Chemical Intermediate, 2010, 5: 20-25. (in Chinese with English abstract)
|
[18] |
Feng P, Wang H, Lin H F, et al. Selective production of guaiacol from black liquor: Effect of solvents[J]. Carbon Resources Conversion, 2019, 2: 1-12.
|
[19] |
刘军利,蒋建春,黄海涛. 木质素CP-GC-MS法裂解行为研究[J]. 林产化学与工业,2009,10:1-6.Liu Junli, Jiang Jianchun, Huang Haitao. Study on thermal transformations of lignin unfer curie-point pyrolysis-GC-MS conditions[J]. Chemistry and Industry of Forest Products, 2009, 10: 1-6. (in Chinese with English abstract)
|
[20] |
杨晓慧,周永红,胡丽红,等. 木质素制备香草醛的研究进展[J]. 纤维素科学与技术,2010,18(4):49-54.Yang Xiaohui, Zhou Yonghong, Hu Lihong, et al. Research advances in preparation of vanillin from lignin[J]. Journal of Cellulose Science and Technology, 2010, 18(4): 49-54. (in Chinese with English abstract)
|
[21] |
李超群,唐修祥,蒋天成. 由丁香油提取99%丁香酚的生产技术研究[J]. 香料香精化妆品,2013,5:4-5.Li Chaoqun, Tang Xiuxiang, Jiang Tiancheng. Study on manufacturing process for 99% purity eugenol from clove oil[J]. Flavour Fragrance Cosmetics, 2013, 5: 4-5. (in Chinese with English abstract)
|
[22] |
刘隽涵,孙建奎,肖领平,等. 金属钼催化云杉制备松柏醇醚及全组分利用[J]. 林产化学加工,2019,4(5):78-83.Liu Junhan, Sun Jiankui, Xiao Lingping, et al. Molybdenum- catalyzed fragmentation of Chinese spruce into coniferyl methyl ether and sequential utilization of total components[J]. Journal of Forestry Engineering, 2019, 4(5): 78-83. (in Chinese with English abstract)
|
[23] |
张欣,高增平. 阿魏酸的研究进展[J]. 中国现代中药,2020,22(1):138-147.Zhang Xin, Gao Zengping. Research progress in ferulic acid[J]. Modern Chinese Medicine, 2020, 22(1): 138-147. (in Chinese with English abstract)
|
[24] |
Zhao Y, Xu Q, Pan T, et al. Depolymerization of lignin by catalytic oxidation with aqueous polyoxometalates[J]. Applied Catalysis A: General, 2013, 467(10): 504-508.
|
[25] |
Wang L, Li J, Chen Y, et al. Investigation of the pyrolysis characteristics of guaiacol lignin using combined Py-GC×GC/TOF-MS and in-situ FTIR[J]. Fuel, 2019, 251: 496-505.
|
[26] |
Liu C, Ye L, Yuan W, et al. Investigation on pyrolysis mechanism of guaiacol as lignin model compound at atmospheric pressure[J]. Fuel, 2019, 232: 632-638.
|
[27] |
Yerrayya A, Natarajan U, Vinu R. Fast pyrolysis of guaiacol to simple phenols: Experiments, theory and kinetic model[J]. Chemical Engineering Science, 2019, 207: 619-630
|
[28] |
Liu C, Deng Y, Wu S, et al. Study on the pyrolysis mechanism of three guaiacyl-type lignin monomeric model compounds[J]. Journal of Analytical and Applied Pyrolysis, 2016, 118: 123-129.
|
[29] |
Verma A M, Agrawal K, Kawale H D, et al. Quantum chemical study on gas phase decomposition of ferulic acid[J]. Molecular Physics, 2018, 116(14): 1895-1907.
|
[30] |
吕薇,张琦,王铁军,等. 生物油重质组分模型物热解行为及其动力学研究[J]. 燃料化学学报,2013,41(2):198-206.Lü Wei, Zhang Qi, Wang Tiejun, et al. Thermal degradation behaviors and pyrolysis kinetics of model compounds of bio-oil heavy fractions[J]. Journal of Fuel Chemistry and Technology, 2013, 41(2): 198-206. (in Chinese with English abstract)
|
[31] |
Harman-Ware A E, Crocker M, Kaur A P, et al. Pyrolysis-GC/MS of sinapyl and coniferyl alcohol[J]. Journal of Analytical and Applied Pyrolysis, 2013, 99(1): 161-169.
|
[32] |
Ledesma E B, Mullery A A, Vu J V, et al. Lumped kinetics for biomass tar cracking using 4-propylguaiacol as a model compound[J]. Industrial Engineering Chemistry & Research, 2015, 54: 5613-5623.
|
[33] |
Asmadi M, Kawamoto H, Saka S. The effects of combining guaiacol and syringol on their pyrolysis[J]. Holzforschung, 2012, 66: 323-330.
|
[34] |
Zhou J, Jin W, Shen D, et al. Formation of aromatic hydrocarbons from co-pyrolysis of lignin-related model compounds with hydrogen-donor reagents[J]. Journal of Analytical and Applied Pyrolysis, 2018, 134(9): 143-149.
|
[35] |
Behrens M, Jeffrey S C, Akasaka H, et al. A study of guaiacol, cellulose, and Hinoki wood pyrolysis with silica, ZrO2&TiO2 and ZSM-5 catalysts[J]. Journal of Analytical and Applied Pyrolysis, 2017, 125: 178-184.
|
[36] |
Ro D, Kim Y M, Lee I G, et al. Bench scale catalytic fast pyrolysis of empty fruit bunches over low cost catalysts and HZSM-5 using a fixed bed reactor[J]. Journal of Cleaner Production, 2018, 176: 298-303.
|
[37] |
马文超,陈娇娇,王铁军,等. 生物油模型化合物催化裂解机理[J]. 农业工程学报,2013,29(9):207-213.Ma Wenchao, Chen Jiaojiao, Wang Tiejun, et al. Catalytic cracking mechanism of bio-oil model compounds[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2013, 29(9): 207-213. (in Chinese with English abstract)
|
[38] |
王芸,邵珊珊,张会岩,等. 生物质模化物催化热解制取烯烃和芳香烃[J]. 化工学报,2015,66(8):3022-3028.Wang Yun, Shao Shanshan, Zhang Huiyan, et al. Catalytic pyrolysis of biomass model compounds to olefins and aromatic hydrocarbons[J]. CIESC Journal, 2015, 66(8): 3022-3028. (in Chinese with English abstract)
|
[39] |
冯占元,张素平,左成月,等. 不同催化剂催化裂化愈创木酚的性能[J]. 石油化工,2015,44(4):459-465.Feng Zhanyuan, Zhang Suping, Zuo Chengyue, et al. Performances of different catalysts in catalytic cracking of guaiacol[J]. Petrochemical Technology, 2015, 44(4): 459-465. (in Chinese with English abstract)
|
[40] |
Jiang X, Zhou J, Zhao J, et al. Catalytic conversion of guaiacol as a model compound for aromatic hydrocarbon production[J]. Biomass and Bioenergy, 2018, 111: 343-351.
|
[41] |
宋锵,于凤文,王佳,等. La/P/Ni 改性分子筛催化裂解生物油模型化合物[J]. 农业工程学报,2016,32(1):284-289.Song Qiang, Yu Fengwen, Wang Jia, et al. Catalytic pyrolysis of bio-oil model compounds over La/P/Ni modified ZSM-5[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2016, 32(1): 284-289. (in Chinese with English abstract)
|
[42] |
Graca I, Lopes J M, Ribeiro M F, et al. Catalytic cracking in the presence of guaiacol [J]. Applied Catalysis B: Environmental, 2011, 101: 613-621.
|
[43] |
Cheah S, Starace A K, Gjersing E, et al. Reactions of mixture of oxygenates found in pyrolysis vapors: deoxygenation of hydroxyacetaldehyde and guaiacol catalyzed by HZSM-5[J]. Topics in Catalysis, 2016, 59: 109-123.
|
[44] |
Si Z, Lv W, Tian Z, et al. Conversion of bio-derived phenolic compounds into aromatic hydrocarbons by co-feeding methanol over γ-A12O3[J]. Fuel, 2018, 233(12): 113-122.
|
[45] |
毛陈,于凤文,聂勇,等. 生物油模型化合物催化共裂解制烃的研究[J]. 石油化工,2016,45(5):536-541.Mao Chen, Yu Fengwen, Nie Yong, et al. Experimental study on bio-oil model compound copyrolysis to hydrocarbons[J]. Petrochemical Technology, 2016, 45(5): 536-541. (in Chinese with English abstract)
|
[46] |
Li S, Zhang S, Feng Z, et al. Coke formation in the catalytic cracking of bio-oil model compounds[J]. Environmental Progress & Sustainable Energy, 2015, 34(1): 240-247.
|
[47] |
Zhang H, Wang Y, Shao S, et al. Catalytic conversion of lignin pyrolysis model compound-guaiacol and its kinetic model including coke formation[J]. Scientific Reports, 2016, 6: 37513.
|
[48] |
Chen G, Zhang R, Ma W, et al. Catalytic cracking of model compounds of bio-oil over HZSM-5 and the catalyst deactivation[J]. Science of the Total Environment, 2018, 631-632(8): 1611-1622.
|
[49] |
Zhang Z, Hu X, Zhang L, et al. Steam reforming of guaiacol over Ni/Al2O3 and Ni/SBA-15: Impacts of support on catalytic behaviors of nickel and properties of coke[J]. Fuel Processing Technology, 2019, 191: 138-151.
|
[50] |
刘玉环,涂春明,王允圃,等. 木质素模型化合物的裂解工艺及机理的研究进展[J]. 高分子通报,2016,28(6):78-83.Liu Yuhuan, Tu Chunming, Wang Yunpu, et al. Progress of research on the pyrolysis process and mechanism of lignin model compounds[J]. Chinese Polymer Bulletin, 2016, 28(6): 78-83. (in Chinese with English abstract)
|
[51] |
Wang M, Liu C, Xu X, et al. Theoretical study of the pyrolysis of vanillin as a model of secondary lignin pyrolysis[J]. Chemical Physics Letters, 2016, 654: 41-45.
|
[52] |
武书彬,邓裕斌,刘超. 木质素单体模化物热解过程的理论分析[J]. 华南理工大学学报:自然科学版,2014,42(10):70-74.Wu Shubin, Deng Yubin, Liu Chao. Theoretical analysis on pyrolysis processes of monomeric model compounds of lignin[J]. Journal of South China University of Technology: Natural Science Edition, 2014, 42(10): 70-74. (in Chinese with English abstract)
|
[53] |
Hao C, Wu S, Liu C. Study on the mechanism of the pyrolysis of a lignin monomeric model compound by in situ FTIR[J]. BioResources, 2014, 9(3): 4441-4448.
|
[54] |
Kotake T, Kawamoto H, Saka S. Pyrolysis reactions of coniferyl alcohol as a model of the primary structure formed during lignin pyrolysis[J]. Journal of Analytical and Applied Pyrolysis, 2013, 104(11): 573-584.
|
[55] |
Hosoya T, Kawamoto H, Saka S. Role of methoxyl group in char formation from lignin-r elated compounds[J]. Journal of Analytical and Applied Pyrolysis, 2009, 84: 79-83.
|
[56] |
Hosoya T, Kawamoto H, Saka S. Pyrolysis gasi?cation reactivities of primary tar and char fractions from cellulose and lignin as studied with a closed ampoule reactor[J]. Journal of Analytical and Applied Pyrolysis, 2008, 83: 71-77.
|
[57] |
Asmadi M, Kawamoto H, Saka S. Thermal reactions of guaiacol and syringol as lignin model aromatic nucle[J]. Journal of Analytical and Applied Pyrolysis, 2011, 92: 88-98.
|
[58] |
Cheng H, Wu S, Huang J, et al. Direct evidence from in situ FTIR spectroscopy that o-quinonemethide is a key intermediate during the pyrolysis of guaiacol[J]. Analytical and Bioanalytical Chemistry, 2017, 409: 2531-2537.
|
[59] |
Liu C, Zhang, Y, Huang X. Study of guaiacol pyrolysis mechanism based on density function theory[J]. Fuel Processing Technology, 2014, 123: 159-165.
|
[60] |
Vuori A I, Bredenberg J B. Thermal chemistry pathways of substituted anisoles[J]. Industrial Engineering Chemistry & Engineering, 1987, 26: 359-365
|
[61] |
Dorrestijn E, Peter M. The radical-induced decomposition of 2-methoxyphenol[J]. Journal of Chemical Society, Perkin Trans. 1999, 2: 777-780.
|
[62] |
Nowakowska M, Herbinet O, Dufour A, et al. Kinetic study of the pyrolysis and oxidation of guaiacol[J]. The Journal of Physical Chemistry A, 2018, 122: 7894-7909.
|
[63] |
Nguyen T T P, Mai V T, Huynh L K. Detailed kinetic modeling of thermal decomposition of guaiacol-A model compound for biomass lignin[J]. Biomass & Bioenergy, 2018, 112(5): 45-60.
|
[64] |
Scheer A M, Mukarakate C, Robichaud D J, et al. Thermal decomposition mechanisms of the methoxyphenols: Formation of phenol, cyclopentadienone, vinylacetylene, and acetylene[J]. The Journal of Physical Chemistry A, 2011, 115(46): 13381-13389.
|
[65] |
Huang J, Li Xi, Wu D, et al. Theoretical studies on pyrolysis mechanism of guaiacol as lignin model compound[J]. Journal of Renewable & Sustainable Energy, 2013, 5(4): 6136-6146.
|
[66] |
Furutani Y, Dohara Y, Kudo S, et al. Theoretical study on the kinetics of thermal decomposition of guaiacol and catechol[J]. The Journal of Physical Chemistry A, 2017, 121(44): 8495-8503.
|
[67] |
陈志寒,崔耀,杨华美,等. 木质素模型化合物热解芳环转化机理研究[J]. 化工技术与开发,2018,47(5):8-10.Chen Zhihan, Cui Yao, Yang Huamei, et al. Conversion mechanism of aromatic structure during pyrolysis of lignin model compounds[J]. Technology & Development of Chemical Industry, 2018, 47(5): 8-10. (in Chinese with English abstract)
|
[68] |
Ormond T K, Scheer A M, Nimlos M R, et al. Polarized matrix infrared spectra of cyclopentadienone: observations, calculations, and assignment for an important intermediate in vombustion and biomass pyrolysis[J]. The Journal of Physical Chemistry A, 2014, 118: 708-718.
|
[69] |
Hemberger P, Custodis V B F, Bodi A, et al. Understanding the mechanism of catalytic fast pyrolysis by unveiling reactive intermediates in heterogeneous catalysis[J]. Nature Communications, 2017, 8:15946.
|