Wang Zheng, Wang Jikui, Tang Yongfei, Luo Yongjun. Design and test of the belt-type residual film rubbing and baling machine[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2020, 36(19): 11-18. DOI: 10.11975/j.issn.1002-6819.2020.19.002
    Citation: Wang Zheng, Wang Jikui, Tang Yongfei, Luo Yongjun. Design and test of the belt-type residual film rubbing and baling machine[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2020, 36(19): 11-18. DOI: 10.11975/j.issn.1002-6819.2020.19.002

    Design and test of the belt-type residual film rubbing and baling machine

    • There are some problems existing in the domestic residual film recycling machinery, such as unable to bale, recovered film was loose, which leads to inconvenient transportation and storage, and easy to drift with the wind, resulting in secondary pollution and so on. In order to solve these problems, the belt-type residual film rubbing and baling machine was designed. The machine mainly consisted of rubbing mechanism, floating feeding mechanism, transmission system and hydraulic system, etc. The rubbing mechanism mainly consisted of front and back baling belts, support rollers, side plates and tensioning mechanism, etc. The baling belts rotated counterclockwise around the upper and lower support rollers, and the tension roller under the driving of the transmission system. The floating feeding mechanism mainly consisted of feeding roller, U-shaped support frame, bearing with sliding seat, and compression spring, etc. It was fixed to the upper end of the connecting plate, and the feeding roller rotated clockwise under the frictional force of the back baling belt. Through the design of the rubbing mechanism and the force analysis of the residual film, the structural dimension parameters of the baling room were determined, which contained the azimuth of the baling room was 0°, the angle of the baling room was 15°, the gap between the front and back of the upper end of the baling room was 15 mm, the gap between the front and back of the bottom of the baling room was 2 mm, the angle between the back baling belt and the horizontal direction was 25°, and the baling belt used PVC conveyor belt. The function of tension mechanism was to make the baling belt keep a certain degree of tension, so as to prevent the belt from slipping, keep the residual film bale baling under continuous pressure, and ensure the compactness of the residual film bale. Through the mechanical analysis of the formation of the residual film bale, the mechanical equation of the residual film core in the baling room was obtained, and then the rotational torque equation of the residual film core was derived. Finally, the field test of the baling machine was carried out. The results showed that the main factors affecting the baling quality were the azimuth of the baling room and the surface morphology of baling belt. The filed test showed that under the conditions of moderate tension of the baling belt, the azimuth angle of the baling room was -5° to 2.5°, the surface of balling belt was corrugated and the linear speed of the baling belt was 2.0 m/s, and the baling rate of the residual film was 100%, the density variation range of the residual film bale was 88.5 to 92.1 kg/m3. When the recovered residual film contained the same impurities, the density of the residual film bale was related to the linear speed of the baling belt, and the higher the linear speed, the higher the density of the residual film bale. However, when the linear speed exceeds 2.5 m/s, the increasing trend of the density slowed down. The research could provide reference for the development of a new type residual film baling machine.
    • loading

    Catalog

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return