Fu Xueqian, Yang Feifei, Zhou Yazhong, Wei Zhonghui. Intelligent early warning theory of the facility agricultural energy internet: Review and prospect[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2021, 37(21): 24-33. DOI: 10.11975/j.issn.1002-6819.2021.21.004
    Citation: Fu Xueqian, Yang Feifei, Zhou Yazhong, Wei Zhonghui. Intelligent early warning theory of the facility agricultural energy internet: Review and prospect[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2021, 37(21): 24-33. DOI: 10.11975/j.issn.1002-6819.2021.21.004

    Intelligent early warning theory of the facility agricultural energy internet: Review and prospect

    • Abstract: Electrification and informatization of agricultural machinery will be the only way for the development of modern agriculture. The energy-driven modern agriculture has also become an effective way to prevent meteorological disasters. However, the agricultural environment monitoring and the energy supply system are operated separately from each other at present. It cannot cope with the chain risks, such as greenhouse power outages and agricultural power overload. An intelligent early warning of agricultural energy internet is basically unexplored so far. Therefore, it is very necessary to integrate the relevant theories of agriculture, informatics, and electrical science, particularly for the facility agriculture, crops, and energy system. This review was focused on the application of artificial intelligence technology in the interdisciplinary of agricultural and power engineering, in terms of system science. An intelligent early warning of agricultural energy internet was also explored using multi-source data fusion. The current research progress of the intelligent early warning was analyzed from three aspects: the interconnection between energy and agriculture, the correlation between energy and agricultural security, and the intelligent early warning of agricultural production. Among them, the interconnection was caused the existence of collaborative security, whereas, the intelligent early warning was one of the measures to solve the collaborative security. After that, the key technologies were also introduced from the fundamental and applied system. Specifically, the concept of the agricultural energy internet was introduced to clarify the difference and connection with general concepts, such as the agricultural Internet of Things, as well as the interaction between facility agriculture and the energy system. The applied system included three aspects, such as the current research, key issues, and difficulties, together with the future directions. It was found that the current intelligent early warning was focused on the specific issues in the various branches of agricultural informatization and electrical engineering. Some specific research was relatively mature, including the plant phenotype monitoring, the facility agricultural environment monitoring, and the static safety analysis of the energy system. Therefore, the key issue of the intelligent early warning can be widely expected to integrate the multi-source sensor data in the agricultural energy internet. As such, the early warning of environmental factors can be realized in the protected agriculture and energy system. The following brief ideas can be proposed. 1) To break through the early warning of the facility agricultural energy system. Decision-making can also be provided for the operation and control of the energy system in intensive agricultural production. 2) To propose the risk propagation in the agricultural energy system, particularly for the unified modeling of the facility agricultural environment and the integrated energy supply system. It can provide a model basis for the early warning of energy internet. 3) To break through the early warning using data fusion of energy and agriculture, particularly for the early warning of crop physiological state. It can provide the decision-making information for the collaborative control of protected facility agriculture environment and integrated energy supply system. This finding can provide a strong reference to the safe production of facility agriculture, especially on the upgrading and development of smart agricultural technology and intelligent equipment for agricultural informatization and electrification.
    • loading

    Catalog

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return