Citation: | Wang Weixing, Yang Mingxin, Gao Peng, Xie Jiaxing, Sun Daozong, Cao Yapeng, Luo Runmei, Lan Yuyang. Inverting the water stress index of the Brassica chinensis using multiple-spectral and meteorological parameters[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2022, 38(6): 157-164. DOI: 10.11975/j.issn.1002-6819.2022.06.018 |
[1] |
卢宇鹏,夏岩石,温少波,等. 不同熟性菜心品质性状的多样性分析[J]. 广东农业科学,2020,47(5):161-164.Lu Yupeng, Xia Yanshi, Wen Shaobo, et al. Diversity of quality traits of Chinese flowering cabbage varieties with different maturity[J]. Guangdong Agricultural Sciences, 2020, 47(5): 161-164. (in Chinese with English abstract)
|
[2] |
徐燕. 土壤水分胁迫对菜心生理生化指标及气孔发育的影响[D]. 广州:暨南大学,2010.Xu Yan. Effects of Soil Water Stress on Physiology and Biochemistry and Stomatal Development in Brassica Chinensis[D]. Guangzhou: Jinan University, 2010. (in Chinese with English abstract)
|
[3] |
李中赫,占车生,胡实,等. 气候变化条件下中国灌溉面积变化的产量效应[J]. 农业工程学报,2021,37(19):94-104.Li Zhonghe, Zhan Chesheng, Hu Shi, et al. Yield effects of irrigated acreage change under climate change in China[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2021, 37(19): 94-104. (in Chinese with English abstract)
|
[4] |
杨恒山,薛新伟,张瑞富,等. 灌溉方式对西辽河平原玉米产量及水分利用效率的影响[J]. 农业工程学报,2019,35(21):69-77.Yang Hengshan, Xue Xinwei, Zhang Ruifu, et al. Effects of irrigation methods on yield and water use efficiency of maize in the West Liaohe Plain[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2019, 35(21): 69-77. (in Chinese with English abstract)
|
[5] |
Wu X, Shi J C, Zuo Q, et al. Parameterization of the water stress reduction function based on soil-plant water relations[J]. Irrigation Science, 2021, 39: 101-122.
|
[6] |
Mukherjee S, Nandi R, Kundu A, et al. Soil water stress and physiological responses of chickpea (Cicer arietinum L. ) subject to tillage and irrigation management in lower Gangetic plain[J]. Agricultural Water Management, 2022, 263: 1-17.
|
[7] |
Yang M X, Gao P, Zhou P, et al. Simulating Canopy Temperature using a random forest model to calculate the crop water stress index of Chinese Brassica[J]. Agronomy, 2021, 11: 2244.
|
[8] |
Jamshidi S, Zand-Parsa S, Niyogi D. Assessing crop water stress index of citrus using in-situ measurements, landsat, and sentinel-2 data[J]. International Journal of Remote Sensing, 2021, 42(5): 1893-1916.
|
[9] |
毋海梅,闫浩芳,张川,等. 温室滴灌黄瓜产量和水分利用效率对水分胁迫的响应[J]. 农业工程学报,2020,36(9):84-93.Wu Haimei, Yan Haofang, Zhang Chuan, et al. Responses of yield and water use efficiency of drip-irrigated cucumber in greenhouse to water stress[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2020, 36(9): 84-93. (in Chinese with English abstract)
|
[10] |
García L, Parra L, Jimenez J M, et al. Deployment strategies of soil monitoring WSN for precision agriculture irrigation scheduling in rural areas[J]. Sensors, 2021, 21(5): 1-27.
|
[11] |
张芮,王旺田,吴玉霞,等. 水分胁迫度及时期对设施延迟栽培葡萄耗水和产量的影响[J]. 农业工程学报,2017,33(1):155-161.Zhang Rui, Wang Wangtian, Wu Yuxia, et al. Effect of moisture stress level and stage on evapotranspiration and yield of grape under protected and delayed cultivation[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017, 33(1): 155-161. (in Chinese with English abstract)
|
[12] |
Kumar N, Rustum R, Shankar V, et al. Self-organizing map estimator for the crop water stress index[J]. Computers and Electronics in Agriculture. 2021, 187, 106232.
|
[13] |
Kumar N, Adeloye A J, Shankar V, et al. Neural computing modelling of the crop water stress index[J]. Agricultural Water Management. 2020, 239: 106259.
|
[14] |
King B A, Tarkalson D D, Sharma V, et al. Thermal crop water stress index base line temperatures for sugarbeet in arid western U. S[J]. Agricultural Water Management, 2021, 243: 1-12.
|
[15] |
王伟,彭彦昆,马伟,等. 冬小麦叶绿素含量高光谱检测技术[J]. 农业机械学报,2010,41(5):172-177.Wang Wei, Peng Yankun, Ma Wei, et al. Prediction of chlorophyll content of winter wheat using leaf-level hyperspectral data[J]. Transactions of the Chinese Society for Agricultural Machinery, 2010, 41(5): 172-177. (in Chinese with English abstract)
|
[16] |
陈鹏,冯海宽,李长春,等. 无人机影像光谱和纹理融合信息估算马铃薯叶片叶绿素含量[J]. 农业工程学报,2019,35(11):63-74.Chen Peng, Feng Haikuan, Li Changchun, et al. Estimation of chlorophyll content in potato using fusion of texture and spectral features derived from UAV multispectral image[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2019, 35(11): 63-74. (in Chinese with English abstract)
|
[17] |
张鑫磊,刘连涛,孙红春,等. 不同施氮水平下棉花叶片最大羧化速率的高光谱估测[J]. 农业工程学报,2020,36(11):166-173.Zhang Xinlei, Liu Liantao, Sun Hongchun, et al. Hyperspectral estimation of the maximum carboxylation rate of cotton leaves under different nitrogen levels[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2020, 36(11): 166-173. (in Chinese with English abstract)
|
[18] |
Gokhan C, Kursad D, Levent G. Use of infrared thermography and hyperspectral data to detect effects of water stress on pepper[J]. Quantitative InfraRed Thermography Journal, 2018, 15(1): 81-94.
|
[19] |
Neiff N, Dhliwayo T, Suarez A E, et al. Using an airborne platform to measure canopy temperature and NDVI under heat stress in maize[J]. Journal of Crop Improvement, 2015, 29(6): 669-690.
|
[20] |
Huang S, Tang L N, Joseph P H, et al. A commentary review on the use of normalized difference vegetation index (NDVI) in the era of popular remote sensing[J]. Journal of Forestry Research, 2021, 32: 1-6.
|
[21] |
Mohammed A N, Raj K, Louis L, et al. Using NDVI to differentiate wheat genotypes productivity under dryland and irrigated conditions[J]. Remote sensing, 2020, 12(5): 1-17.
|
[22] |
许改平,吴兴波,刘芳,等. 高温胁迫下毛竹叶片色素含量与反射光谱的相关性[J]. 林业科学,2014,50(5):41-48.Xu Gaiping, Wu Xingbo, Liu Fang, et al. The correlation between the pigment content and reflectance spectrum in phyllostachys edulis leaves subjected to high temperature[J]. Scientia Silvae Sinicae, 2014, 50(5): 41-48. (in Chinese with English abstract)
|
[23] |
程高峰. 高温胁迫下水稻生理及光谱特性的研究[D]. 镇江:江苏大学,2009.Cheng Gaofeng. Study on the Physiological and Hyperspectral Characteristics of Rice Under High Temperature Stress[D]. Zhenjiang: Jiangsu University, 2009. (in Chinese with English abstract)
|
[24] |
Sagan V, Maimaitijiang M, Sidike P, et al. UAV-based high resolution thermal imaging for vegetation monitoring, and plant phenotyping using ICI 8640 P, FLIR Vue Pro R 640, and thermomap cameras[J]. Remote Sensing, 2019, 11(3): 1-29.
|
[25] |
Ihuoma S O, Madramootoo C A. Sensitivity of spectral vegetation indices for monitoring water stress in tomato plants[J]. Computers and Electronics in Agriculture, 2019, 163: 1-10.
|
[26] |
梁金晨,江晓东,杨沈斌,等. 基于高光谱遥感数据的水稻叶温反演[J]. 南方农业学报,2020,51(1):230-236.Liang Jinchen, Jiang Xiaodong, Yang Shenbin, et al. Rice leaf temperature inversion based on hyperspectral remote sensing data[J]. Journal of Southern Agriculture, 2020, 51(1): 230-236. (in Chinese with English abstract)
|
[27] |
Gyamerah S A, Ngare P, Ikpe D. Probabilistic forecasting of crop yields via quantile random forest and Epanechnikov Kernel function[J]. Agriculture and Forest Meteorology, 2020, 280: 107808.
|
[28] |
Virnodkar S S, Pachghare V K, Patil V C, et al. Remote sensing and machine learning for crop water stress determination in various crops: a critical review[J]. Precision Agriculture, 2020, 21(5): 1121-1155.
|
[29] |
徐敏,赵艳霞,张顾,等. 基于机器学习算法的冬小麦始花期预报方法[J]. 农业工程学报,2021,37(11):162-171.Xu Min, Zhao Yanxia, Zhang Gu, et al. Method for forecasting winter wheat first flowering stage based on machine learning algorithm[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2021, 37(11): 162-171. (in Chinese with English abstract)
|
[30] |
谭丞轩. 基于无人机多光谱遥感的大田玉米土壤含水率估算模型研究[D]. 杨凌:西北农林科技大学,2020.Tan Chengxuan. Research on the Estimation Model of Field Maize Soil Moisture Content Based on UAV Multispectral Remote Sensing[D]. Yangling: Northwest A&F University, 2020. (in Chinese with English abstract)
|
[31] |
Li X J, Du H Q, Mao F J, et al. Estimating bamboo forest aboveground biomass using EnKF-assimilated MODIS LAI spatiotemporal data and machine learning algorithms[J]. Agriculture and Forest Meteorology, 2018, 256: 445-457.
|
[32] |
黄春燕,王登伟,肖莉娟,等. 不同水分条件下棉花光谱数据对冠层叶片温度的响应特征[J]. 棉花学报,2014,26(3):244-251.Huang Chunyan, Wang Dengwei, Xiao Lijuan, et al. The responsive characteristics between cotton canopy leaves temperature from infrared thermography and hyperspectral data under different water conditions[J]. Cotton Science, 2014, 26(3): 244-251. (in Chinese with English abstract)
|
[33] |
Corinna C, Vladimir V. Support vector networks[J]. Machine Learning, 1995, 20(3):273-297.
|
[34] |
Osroosh Y, Troy Peters R, Campbell C S, et al. Automatic irrigation scheduling of apple trees using theoretical crop water stress index with an innovative dynamic threshold[J]. Computer and Electronic in Agriculture, 2015, 118: 193-203.
|
[1] | Li Jiaxing, Weng Zhonghua, Chen Xin. Influence of near-bed boundary condition on mixture model for hyper-concentrated sediment-laden flow in open-channel[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2022, 38(12): 92-99. DOI: 10.11975/j.issn.1002-6819.2022.12.011 |
[2] | Si Qiaorui, Guo Yongsheng, Tian Ding, Ma Wensheng, Zhang Haoyang, Yuan Shouqi. Study on the inner flow characteristics of an inside unshroud impeller centrifugal pump under gas-liquid two phase condition[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2021, 37(24): 30-37. DOI: 10.11975/j.issn.1002-6819.2021.24.004 |
[3] | Sun Zhilin, Hu Qiuyue, Tu Wenrong, Fang Shibiao, Yang Yang. Heat transfer characteristics in circulating solar heat tubes based on gas-liquid two-phase flow[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2019, 35(24): 246-254. DOI: 10.11975/j.issn.1002-6819.2019.24.029 |
[4] | Luo Xingqi, Yan Sina, Feng Jianjun, Zhu Guojun, Sun Shuaihui, Chen Senlin. Research on force characteristics of gas-liquid two-phase centrifugal pump[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2019, 35(23): 66-72. DOI: 10.11975/j.issn.1002-6819.2019.23.008 |
[5] | Sun Chunhua, Ning Zhi, Qiao Xinqi, Li Yuanxu, Lü Ming. Gas-liquid two-phase flow pattern affecting spray shape and droplet size distribution[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2019, 35(12): 29-37. DOI: 10.11975/j.issn.1002-6819.2019.12.004 |
[6] | Zhang Xiaoying, Li Lin, Jin Sheng, Tan Yihai, Wu Yangfeng. Experiment studies on impact of siphon gradient on gas-liquid two-phase flow characteristic[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017, 33(14): 122-129. DOI: 10.11975/j.issn.1002-6819.2017.14.017 |
[7] | Sha Yi, Liu Xiangsong. Numerical calculation on gas-liquid two-phase hydrotransport and flow field measurement in volute with probes for vortex pump[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2014, 30(18): 93-100. DOI: 10.3969/j.issn.1002-6819.2014.18.012 |
[8] | Li Hong, Xu Dehuai, Tu Qin, Cheng Jun, Li Lei. Numerical simulation on gas-liquid two-phase flow of self-priming pump during starting period[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2013, 29(3): 77-83. |
[9] | Fan Lidan, Ma Wenxing, Chai Bosen, Lu Xiuquan. Numerical simulation and particle image velocimetry for gas-liquid two-phase flow in hydraulic couplings[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2011, 27(11): 66-70. |
[10] | Yi Weiming, Wang Nana, Zhang Botao, Li Zhihe. Experimental study on gas-solid two-phase flow in a horizontal entrained bed[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2006, 22(1): 11-14. |