Citation: | Liang Xiaoting, Pang Qi, Yang Yi, Wen Chaowu, Li Youli, Huang Wenqian, Zhang Chi, Zhao Chunjiang. Online detection of tomato defects based on YOLOv4 model pruning[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2022, 38(6): 283-292. DOI: 10.11975/j.issn.1002-6819.2022.06.032 |
[1] |
Li J B, Luo W, Wang Z L, et al. Early detection of decay on apples using hyperspectral reflectance imaging combining both principal component analysis and improved watershed segmentation method[J]. Postharvest Biology Technology, 2019, 149(3): 235-246.
|
[2] |
王树文,张长利,房俊龙. 基于计算机视觉的番茄损伤自动检测与分类研究[J]. 农业工程学报,2005,21(8):98-101.Wang Shuwen, Zhang Changli, Fang Junlong. Research on automatic detection and classification of tomato damage based on computer vision[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2005, 21(8): 98-101. (in Chinese with English abstract)
|
[3] |
Liu L, Li Z K, Lan Y F, et al. Design of a tomato classifier based on machine vision[J]. PLoS One, 2019, 14(7): e0219803.
|
[4] |
袁亮,涂雪滢,巨刚,等. 基于机器视觉的番茄实时分级系统设计[J]. 新疆大学学报:自然科学版,2017,34(1):11-16.Yuan Liang, Tu Xueying, Ju Gang, et al. Tomato real-time classification based on machine vision detection system design[J]. Journal of Xinjiang Universit: Natural Science Edition, 2017, 34(1): 11-16. (in Chinese with English abstract)
|
[5] |
燕红文. 基于机器视觉的番茄损伤区域自动检测[J]. 无线互联科技,2020,17(11):126-127.Yan Hongwen. Automatic detection of tomato damage area based on machine vision[J]. Wireless Internet Technology, 2020, 17(11): 126-127. (in Chinese with English abstract)
|
[6] |
Muturi I D, Eisa B, Cedric O, et al. A computer vision system for defect discrimination and grading in tomatoes using machine learning and image processing[J]. Artificial Intelligence in Agriculture, 2019(2): 28-37.
|
[7] |
Muturi I D. 基于机器学习和图像处理的番茄缺陷判别和分级系统[D]. 南京:南京农业大学,2019.Muturi I D. A Computer Vision System for Defect Discrimination and Grading in Tomatoes using Machine Learning and Image Processing[D]. Nanjing: Nanjing Agricultural University, 2019. (in Chinese with English abstract)
|
[8] |
张廷婷. 基于机器视觉的番茄分级包装系统的研究[D]. 成都:成都大学,2021.Zhang Tingting. Research on Tomato Grad Packaging System Based on Machine Vision[D]. Chengdu: Chengdu University, 2021. (in Chinese with English abstract)
|
[9] |
缑新科,常英. 基于机器视觉的樱桃番茄在线分级系统设计[J]. 计算机与数字工程,2020,48(7):1798-1803.Gou Xinke, Chang Ying. Design of cherry tomato online grading system based on machine vision[J]. Computer & Digital Engineering, 2020, 48(7): 1798-1803. (in Chinese with English abstract)
|
[10] |
LeCun Y, Bengio Y, Hinton G. Deep learning[J]. Nature, 2015, 521(7553): 436-444.
|
[11] |
Fan S X, Li J B, Zhang Y H, et al. On line detection of defective apples using computer vision system combined with deep learning methods[J]. Journal of Food Engineering, 2020, 286: 110102.
|
[12] |
龙洁花,赵春江,林森,等. 改进Mask R-CNN的温室环境下不同成熟度番茄果实分割方法[J]. 农业工程学报,2021,37(18):100-108.Long Jiehua, Zhao Chunjiang, Lin Sen, et al. Segmentation method of the tomato fruits with different maturities under greenhouse environment based on improved Mask R-CNN[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2021, 37(18): 100-108. (in Chinese with English abstract)
|
[13] |
Costa A Z, Figueroa H E H, Fracarolli J A. Computer vision based detection of external defects on tomatoes using deep learning[J]. Biosystems Engineering, 2020, 190: 131-144.
|
[14] |
Redmon J, Divvala S, Girshick R, et al. You only look once: unified, real-time object detection[C]//IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2016: 779-788.
|
[15] |
Ren S Q, He K M, Girshick R, et al. Faster R-CNN: Towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis Machine Intelligence, 2017, 39(6): 1137-1149.
|
[16] |
赵春江,文朝武,林森,等. 基于级联卷积神经网络的番茄花期识别检测方法[J]. 农业工程学报,2020,36(24):143-152.Zhao Chunjiang, Wen Chaowu, Lin Sen, et al. Tomato florescence recognition and detection method based on cascaded neural network[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2020, 36(24): 143-152. (in Chinese with English abstract)
|
[17] |
侯加林,房立发,吴彦强,等. 基于深度学习的生姜种芽快速识别及其朝向判定[J]. 农业工程学报,2021,37(1):213-222.Hou Jialin, Fang Lifa, Wu Yanqiang, et al. Rapid recognition and orientation determination of ginger shoots with deep learning[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2021, 37(1): 213-222. (in Chinese with English abstract)
|
[18] |
黄丽明,王懿祥,徐琪,等. 采用YOLO算法和无人机影像的松材线虫病异常变色木识别[J]. 农业工程学报,2021,37(14):197-203.Huang Liming, Wang Yixiang, Xu Qi, et al. Recognition of abnormally discolored trees caused by pine wilt disease using YOLO algorithm and UAV images[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2021, 37(14): 197-203. (in Chinese with English abstract)
|
[19] |
燕红文,刘振宇,崔清亮,等. 基于特征金字塔注意力与深度卷积网络的多目标生猪检测[J]. 农业工程学报,2020,36(11):193-202.Yan Hongwen, Liu Zhenyu, Cui Qingliang, et al. Multi-target detection based on feature pyramid attention and deep convolution network for pigs[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2020, 36(11): 193-202. (in Chinese with English abstract)
|
[20] |
Hu X L, Liu Y, Zhao Z X, et al. Real-time detection of uneaten feed pellets in underwater images for aquaculture using an improved YOLO-V4 network[J]. Computers and Electronics in Agriculture, 2021, 185: 106-135.
|
[21] |
Li S W, Gu X Y, Xu X R, et al. Detection of concealed cracks from ground penetrating radar images based on deep learning algorithm[J]. Construction and Building Materials, 2021, 273: 121949.
|
[22] |
Bochkovskiy A, Wang C Y, Liao H Y M. YOLOv4: Optimal speed and accuracy of object detection[J]. arXiv preprint arXiv: 2004. 10934, 2020.
|
[23] |
Redmon J, Farhadi A. YOLOv3: An incremental improvement[J]. arXiv preprint arXiv: 2018, 1804: 02767.
|
[24] |
Zhang M Y, Jiang Y, Li C Y, et al. Fully convolutional networks for blueberry bruising and calyx segmentation using hyperspectral transmittance imaging[J]. Biosystems Engineering, 2020, 192: 159-175.
|
[25] |
Zheng Z H, Wang P, Liu W, et al. Distance-IoU loss: Faster and better learning for bounding box regression[J]. arXiv preprint arXiv, 2020, 34(7): 12993-13000.
|
[26] |
Liu Z, Li J G, Shen Z Q, et al. Learning efficient convolutional networks through network slimming[C]//Proceedings of the IEEE international conference on computer vision, 2017: 2736-2744.
|
[27] |
Wu D H, Lv S C, Jiang M, et al. Using channel pruning-based YOLO v4 deep learning algorithm for the real-time and accurate detection of apple flowers in natural environments[J]. Computers and Electronics in Agriculture, 2020, 178: 105742.
|
[28] |
周志华. 机器学习[M]. 北京:清华大学出版社,2016.
|
[1] | Li Jiaxing, Weng Zhonghua, Chen Xin. Influence of near-bed boundary condition on mixture model for hyper-concentrated sediment-laden flow in open-channel[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2022, 38(12): 92-99. DOI: 10.11975/j.issn.1002-6819.2022.12.011 |
[2] | Si Qiaorui, Guo Yongsheng, Tian Ding, Ma Wensheng, Zhang Haoyang, Yuan Shouqi. Study on the inner flow characteristics of an inside unshroud impeller centrifugal pump under gas-liquid two phase condition[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2021, 37(24): 30-37. DOI: 10.11975/j.issn.1002-6819.2021.24.004 |
[3] | Sun Zhilin, Hu Qiuyue, Tu Wenrong, Fang Shibiao, Yang Yang. Heat transfer characteristics in circulating solar heat tubes based on gas-liquid two-phase flow[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2019, 35(24): 246-254. DOI: 10.11975/j.issn.1002-6819.2019.24.029 |
[4] | Luo Xingqi, Yan Sina, Feng Jianjun, Zhu Guojun, Sun Shuaihui, Chen Senlin. Research on force characteristics of gas-liquid two-phase centrifugal pump[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2019, 35(23): 66-72. DOI: 10.11975/j.issn.1002-6819.2019.23.008 |
[5] | Sun Chunhua, Ning Zhi, Qiao Xinqi, Li Yuanxu, Lü Ming. Gas-liquid two-phase flow pattern affecting spray shape and droplet size distribution[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2019, 35(12): 29-37. DOI: 10.11975/j.issn.1002-6819.2019.12.004 |
[6] | Zhang Xiaoying, Li Lin, Jin Sheng, Tan Yihai, Wu Yangfeng. Experiment studies on impact of siphon gradient on gas-liquid two-phase flow characteristic[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017, 33(14): 122-129. DOI: 10.11975/j.issn.1002-6819.2017.14.017 |
[7] | Sha Yi, Liu Xiangsong. Numerical calculation on gas-liquid two-phase hydrotransport and flow field measurement in volute with probes for vortex pump[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2014, 30(18): 93-100. DOI: 10.3969/j.issn.1002-6819.2014.18.012 |
[8] | Li Hong, Xu Dehuai, Tu Qin, Cheng Jun, Li Lei. Numerical simulation on gas-liquid two-phase flow of self-priming pump during starting period[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2013, 29(3): 77-83. |
[9] | Fan Lidan, Ma Wenxing, Chai Bosen, Lu Xiuquan. Numerical simulation and particle image velocimetry for gas-liquid two-phase flow in hydraulic couplings[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2011, 27(11): 66-70. |
[10] | Yi Weiming, Wang Nana, Zhang Botao, Li Zhihe. Experimental study on gas-solid two-phase flow in a horizontal entrained bed[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2006, 22(1): 11-14. |