Citation: | Li Zhen, Cao Jianfei, Yang Han, Liu Jianhua, Wang Zhaohai, Duan Xinrong, Zhang Letian. Spectral unmixing of straw and soil to estimate the soil salinity using non-negative matrix factorization[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2022, 38(8): 161-168. DOI: 10.11975/j.issn.1002-6819.2022.08.019 |
[1] |
Wang Z, Zhang F, Zhang X L, et al. Regional suitability prediction of soil salinization based on remote-sensing derivatives and optimal spectral index[J]. Science of the Total Environment, 2021, 775(12): 145807.
|
[2] |
Boudibi S, Sakaa B, Zineddine B, et al. Spatial prediction and modeling of soil salinity using simple cokriging, artificial neural networks, and support vector machines in El Outaya plain, Biskra, southeastern Algeria[J]. Acta Geochimica, 2021, 40(3): 390-408.
|
[3] |
边玲玲,王卷乐,郭兵,等. 基于特征空间的黄河三角洲垦利县土壤盐分遥感提取[J]. 遥感技术与应用,2020,35(1):211-218.Bian Lingling, Wang Juanle, Guo Bing, et al. Remote Sensing extraction of soil salinity in Yellow River Delta Kenli County based on feature space[J]. Remote Sensing Technology and Application, 2020, 35(1): 211-218. (in Chinese with English abstract)
|
[4] |
Gorji T, Sertel E, Tanik A. Monitoring soil salinity via remote sensing technology under data scarce conditions: A case study from Turkey[J]. Ecological Indicators, 2017, 74: 384-391.
|
[5] |
Singh A. Managing the salinization and drainage problems of irrigated areas through remote sensing and GIS techniques[J]. Ecological Indicators, 2018, 89: 584-589.
|
[6] |
Liu L, Ji M, Buchroithner M. A case study of the forced invariance approach for soil salinity estimation in vegetation-covered terrain using airborne hyperspectral imagery[J]. ISPRS International Journal of Geo-Information, 2018, 7(2):48-59.
|
[7] |
王丹阳,陈红艳,王桂峰,等. 无人机多光谱反演黄河口重度盐渍土盐分的研究[J]. 中国农业科学,2019,52(10):1698-1709.Wang Danyang, Chen Hongyan, Wang Guifeng, et al. Salinity inversion of severe saline soil in the Yellow River Estuary based on UAV multi-Spectra[J]. Scientia Agricultura Sinica, 2019, 52(10): 1698-1709. (in Chinese with English abstract)
|
[8] |
Wei G F, Li Y, Zhang Z T, et al. Estimation of soil salt content by combining UAV-borne multispectral sensor and machine learning algorithms[J]. PeerJ, 2020, 8(2): e9087.
|
[9] |
Wang J Z, Ding J L, Yu D L, et al. Machine learning-based detection of soil salinity in an arid desert region, Northwest China: A comparison between Landsat-8 OLI and Sentinel-2 MSI[J]. The Science of the Total Environment, 2020, 707: 136092.
|
[10] |
Peng J, Biswas A, Jiang Q, et al. Estimating soil salinity from remote sensing and terrain data in southern Xinjiang Province, China[J]. Geoderma, 2019, 337: 1309-1319.
|
[11] |
韩霁昌,李晓明. 盐碱地利用障碍因子高光谱遥感反演研究[J]. 光谱学与光谱分析,2013,33(7):1932-1935.Han Jichang, Li Xiaoming. Research on hyperspectral remote sensing inversion of barrier factors in saline-alkaline land use[J]. Spectroscopy and Spectral Analysis, 2013, 33(7): 1932-1935. (in Chinese with English abstract)
|
[12] |
李娟,陈超,王昭. 基于不同变换形式的干旱区土壤盐分高光谱特征反演[J]. 水土保持研究,2018,25(1):197-201.Li Juan, Chen Chao, Wang Zhao. Inversion of high spectral characteristics of soil salt in arid area based on different transform forms[J]. Research of Soil and Water Conservation, 2018, 25(1): 197-201. (in Chinese with English abstract)
|
[13] |
吴裕,申广荣,刘璐,等. 土壤有机质高光谱特征及其反演研究[J]. 上海交通大学学报(农业科学版),2019,37(4):37-44.Wu Yu, Shen Guangrong, Liu Lu, et al. Hyperspectral characteristics of soil organic matter and inversion methods[J]. Journal of Shanghai Jiaotong University(Agricultural Science), 2019, 37(4): 37-44. (in Chinese with English abstract)
|
[14] |
彭金英,蒋金豹,崔希民,等. 宁夏盐碱地土壤盐分高光谱反演[J]. 矿山测量,2021,49(1):69-73.Peng Jinying, Jiang Jinbao, Cui Ximin, et al. Hyperspectral inversion of the soil salt content in saline-alkali land of Ningxia[J]. Mine Surveying, 2021, 49(1): 69-73. (in Chinese with English abstract)
|
[15] |
朱赟,申广荣,项巧巧,等. 基于不同光谱变换的土壤盐含量光谱特征分析[J]. 土壤通报,2017,48(3):560-568.Zhu Yun, Shen Guangrong, Xiang Qiaoqiao, et al. Spectral characteristics of soil salinity based on different pre-processing methods[J]. Chinese Journal of Soil Science, 2017, 48(3): 560-568. (in Chinese with English abstract)
|
[16] |
孙亚楠,李仙岳,史海滨,等. 基于多源数据融合的盐分遥感反演与季节差异性研究[J]. 农业机械学报,2020,51(6):169-180.Sun Yanan, Li Xianyue, Shi Haibin, et al. Remote sensing inversion of soil salinity and seasonal difference analysis based on multi-source data fusion[J]. Transactions of the Chinese Society for Agricultural Machinery, 2020, 51(6): 169-180. (in Chinese with English abstract)
|
[17] |
厉彦玲,赵庚星,常春艳,等. OLI与HSI影像融合的土壤盐分反演模型[J]. 农业工程学报,2017,33(21):173-180.Li Yanling, Zhao Gengxing, Chang Chunyan, et al. Soil salinity retrieval model based on OLI and HSI image fusion[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017, 33(21): 173-180. (in Chinese with English abstract)
|
[18] |
Ouerghemmi W, Gomez C, Naceur S, et al. Semi-blind source separation for the estimation of the clay content over semi-vegetated areas using VNIR/SWIR hyperspectral airborne data[J]. Remote Sensing of Environment, 2016, 181: 251-263.
|
[19] |
罗红霞,龚健雅,蹇代君. 亚热带低山丘陵区土壤遥感监测图像处理[J]. 长江流域资源与环境,2006(1):41-47.Luo Hongxia, Gong Jianya, Jian Daijun. Image processingof soil survey by remote sensing in subtropical hilly lands[J]. Resources and Environment in the Yangtze Basin, 2006(1): 41-47. (in Chinese with English abstract)
|
[20] |
李燕丽,吴士文,刘娅,等. 基于FastICA盲源分离法去除土壤干扰的小麦生物量高光谱估算[J]. 生态学杂志,2017,36(4):1158-1164.Li Yanli, Wu Shiwen, Liu Ya, et al. Applying fast independent component analysis algorithm of blind source separation method to remove soil effects on hyperspectral data for wheat biomass estimation[J]. Chinese Journal of Ecology, 2017, 36(4): 1158-1164. (in Chinese with English abstract)
|
[21] |
L Y, P X Z, Shi R J. et al. Predicting soil salt content over partially vegetated surfaces using non-negative matrix factorization[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2015, 8(11): 5305-5316.
|
[22] |
刘娅,潘贤章,石荣杰,等. 基于盲源分离的稀疏植被区土壤含盐量反演[J]. 土壤学报,2016,53(2):322-331.Liu Ya, Pan Xianzhang, Shi Rongjie, et al. Estimation of soil salt content over partially vegetated areas based on blind source separation[J]. Acta Pedologica Sinica, 2016, 53(2): 322-331. (in Chinese with English abstract)
|
[23] |
Ouerghemmi W, Gomez C, Naceur S, et al. Applying blind source separation on hyperspectral data for clay content estimation over partially vegetated surfaces[J]. Geoderma, 2011, 163(3): 227-237.
|
[24] |
Bartholomeus H, Kooistra L, Stevens A, et al. Soil organic carbon mapping of partially vegetated agricultural fields with imaging spectroscopy[J]. International Journal of Applied Earth Observation and Geoinformation, 2011, 13(1): 81-88.
|
[25] |
赵伟,包妮沙,刘善军,等. 地表枯枝落叶层影响下的土壤混合光谱特征及解混方法研究[J]. 光谱学与光谱分析,2020,40(7):2188-2193.Zhao Wei, Bao Nisha, Liu Shanjun, et al. Plant litter effect of the soil organic carbon estimation and unmixing method based on the visible-near infrared spectra[J]. Spectroscopy and Spectral Analysis, 2020, 40(7): 2188-2193. (in Chinese with English abstract)
|
[26] |
黄静,赵庚星,奚雪,等. 光谱与纹理信息结合的黄河三角洲土壤盐渍化信息提取:以垦利区为例[J]. 农业资源与环境学报,2022,39(3):594-601.Huang jing, Zhao Gengxing, Xi Xue, et al. Extraction of soil salinization information by combining spectral and texturedata in the Yellow River Delta: A case study in Kenli District, Shandong Province[J]. Journal of Agricultural Resources and Environment, 2022, 39(3): 594-601. (in Chinese with English abstract)
|
[27] |
王伦平,陈亚新,曾国芳. 内蒙古河套灌区灌溉排水与盐碱化防治[M]. 北京:水利电力出版社,1993.
|
[28] |
Liu Y L, Jiang Q H, Fei T, et al. Transferability of a visible and near-infrared model for soil organic matter estimation in riparian landscapes[J]. Remote Sensing, 2014, 6(5): 4305-4322.
|
[29] |
Lee D D, Seung H S. Learning the parts of objects by non-negative matrix factorization[J]. Nature, 1999, 401(6755): 788-791.
|
[30] |
曹见飞. 基于空谱约束解混的土壤盐分高光谱遥感反演[D]. 济南:山东师范大学地理与环境学院,2021.Cao Jianfei. Hyperspectral Remote Sensing Inversion of Soil Salinity Based on Spatial-spectral Constrained Unmixing[D]. Jinan: College of Geograph and Environment, Shandong Normal University, 2021. (in Chinese with English abstract)
|
[31] |
Wold S, Martens H, Wold H. The multivariate calibration problem in chemistry solved by the PLS method[J]. Lecture Notes in Mathematics, 1983, 973: 286-293.
|
[32] |
Viscarra Rossel R A, McGlynn R N, McBratney A B. Determining the composition of mineral-organic mixes using UV-vis-NIR diffuse reflectance spectroscopy[J]. Geoderma, 2006, 137: 70-82.
|
[33] |
Yue J B, Tian Q J, Tang S F, et al. A dynamic soil endmember spectrum selection approach for soil and crop residue linear spectral unmixing analysis[J]. International Journal of Applied Earth Observation and Geoinformation, 2019, 78: 306-317.
|
[34] |
Bioucas-Dias J M, Plaza A, Dobigeon N, et al. Hyperspectral unmixing overview: Geometrical, statistical, and sparse regression-based approaches[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2012, 5(2): 354-379.
|
[35] |
Xu X, Shi Z W. Multi-objective based spectral unmixing for hyperspectral images[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2017, 124: 54-69.
|
[1] | WANG Yuwei, MA Xu, TAN Suiyan, JIA Xingna, CHEN Jiaying, QIN Yijuan, HU Xihong, ZHENG Huiwen. Inverting rice nitrogen content with multimodal data fusion of unmanned aerial vehicle remote sensing and ground observations[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2024, 40(18): 100-109. DOI: 10.11975/j.issn.1002-6819.202404175 |
[2] | Yang Xuefeng, Zan Mei, Munire·Maimaiti. Estimation of above ground biomass of Populus euphratica forest using UAV and satellite remote sensing[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2021, 37(1): 77-83. DOI: 10.11975/j.issn.1002-6819.2021.01.010 |
[3] | Chen Hongyan, Zhao Gengxing, Li Yuhuan, Li Hua, Gai Yuefeng. Modeling and estimation of field undisturbed soil salt based on hyperspectra under removal of moisture factor[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2018, 34(12): 119-125. DOI: 10.11975/j.issn.1002-6819.2018.12.014 |
[4] | Xing Huimin, Li Zhenhai, Xu Xingang, Feng Haikuan, Yang Guijun, Chen Zhaoxia. Multi-assimilation methods based on AquaCrop model and remote sensing data[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017, 33(13): 183-192. DOI: 10.11975/j.issn.1002-6819.2017.13.024 |
[5] | Wang Xinyun, Guo Yige, He Jie. Estimation of above-ground biomass of grassland based on multi-source remote sensing data[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2014, 30(11): 159-166. DOI: 10.3969/j.issn.1002-6819.2014.11.020 |
[6] | Li Shuqiang, Li Minzan. Yield estimation of winter wheat in early growth periods by vehicle-borne ground-based remote sensing system[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2014, 30(3): 120-127. DOI: 10.3969/j.issn.1002-6819.2014.03.016 |
[7] | Zhu Shuang, Zhang Jinshui. Provincial agricultural stratification method for crop area estimation by remote sensing[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2013, 29(2): 184-191. |
[8] | Relationships between water indexes and soil moisture/crop physiological indexes using ground-based remote sensing and field experiments[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2010, 26(4): 151-155. |
[9] | Fu Qinghua, Ni Shaoxiang, Wang Shixin, Zhu Yi. Retrieval of soil salt content based on remote sensing[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2007, 23(1): 48-54. |
[10] | Liu Zhanyu, Huang Jingfeng, Wu Xinhong, Dong Yongping, Wang Fumin, Liu Pengtao. Hyperspectral remote sensing estimation models for the grassland biomass[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2006, 22(2): 111-115. |