Citation: | Zhao Liang, Zhang Zhaoyue, Liao Ziyi, Wang Ling. Relationship extraction in the field of food safety based on BERT and improved PCNN model[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2022, 38(8): 263-270. DOI: 10.11975/j.issn.1002-6819.2022.08.030 |
[1] |
Amit S. Introducing the knowledge graph[R]. America: Official Blog of Google, 2012.
|
[2] |
Paulheim H, Cimiano P. Knowledge graph refinement: A survey of approaches and evaluation methods[J]. Semantic Web, 2016, 8(3): 489-508.
|
[3] |
侯梦薇,卫荣,陆亮,等. 知识图谱研究综述及其在医疗领域的应用[J]. 计算机研究与发展,2018,55(12):2587-2599.Hou Mengwei, Wei Rong, Lu Liang, et al. Overview of knowledge mapping and its application in the medical field[J]. Computer Research and Development, 2018, 55(12): 2587-2599. (in Chinese with English abstract)
|
[4] |
夏恩君,宋剑锋. 开放式创新研究的演化路径和热点领域分析:基于科学知识图谱视角[J]. 科研管理,2015,36(7):28-37.Xia Enjun, Song Jianfeng. An analysis of the evolution path and hot topics of open innovation based on the view of the scientific knowledge map[J]. Science Research Management, 2015, 36(7): 28-37. (in Chinese with English abstract)
|
[5] |
刘烨宸,李华昱. 领域知识图谱研究综述[J]. 计算机系统应用,2020,29(6):1-12.Liu Yechen, Li Huayu. Survey on domain knowledge graph research[J]. Computer Systems and Applications, 2020, 29(6): 1-12. (in Chinese with English abstract)
|
[6] |
刘峤,李杨,段宏,等. 知识图谱构建技术综述[J]. 计算机研究与发展,2016,53(3):582-600.Liu Jiao, Li Yang, Duan Hong, et al. Knowledge graph construction techniques[J]. Journal of Computer Research and Development, 2016, 53(3): 582-600. (in Chinese with English abstract)
|
[7] |
李冬梅,张扬,李东远,等. 实体关系抽取方法研究综述[J]. 计算机研究与发展,2020,57(7):1424-1448.Li Dongmei, Zhang Yang, Li Dongyuan, et al. Review of entity relation extraction methods[J]. Computer Research and Development, 2020, 57(7): 1424-1448. (in Chinese with English abstract)
|
[8] |
李涓子,侯磊. 知识图谱研究综述[J]. 山西大学学报(自然科学版),2017,40(3):454-459.Li Juanzi, Hou Lei. Reviews on knowledge graph research[J]. Journal of Shanxi University (Natural Science Edition), 2017, 40(3): 454-459. (in Chinese with English abstract)
|
[9] |
黄恒琪,于娟,廖晓,等. 知识图谱研究综述[J]. 计算机系统应用,2019,28(6):1-12.Huang Hengqi, Yu Juan, Liao Xiao, et al. Review on knowledge graphs[J]. Computer System Application, 2019, 28(6): 1-12. (in Chinese with English abstract)
|
[10] |
Chinchor N, Marsh E. Muc-7 information extraction task definition[C]//Proc of the 7th Message Understanding Conf, Philadelphia, USA, 1998: 359-367.
|
[11] |
Aitken J S. Learning information extraction rules: An inductive logic programming approach[C]//Proc of External Credit Assessment Institution, Lyon, Frence, 2002: 355-359.
|
[12] |
Zhou G, Su J, Zhang J, et al. Exploring various knowledge in relation extraction[C]//The 43rd Annual Meeting of the Association for Computational Linguistics, Proceedings of the Conference, Michigan, USA, 2005: 427-434.
|
[13] |
Zelenco D, Aone C, Richardella A. Kernel methods for relation extraction[J]. Journal of Machine Learning Research, 2003, 3(2): 1083-1106.
|
[14] |
Jiang J, Zhai C X. A systematic exploration of the feature space for relation extraction[C]//Proc of the Conf of the North American Chapter of the Association for Computational Linguistics, Stroudsburg, USA, 2007: 113-120.
|
[15] |
王东波,吴毅,叶文豪,等. 多特征知识下的食品安全事件实体抽取研究[J]. 数据分析与知识发现,2017,1(3):54-61.Wang Dongbo, Wu Yi, Ye Wenhao, et al. Research on food safety event entity extraction based on multi-feature knowledge[J]. Data Analysis and Knowledge Discovery, 2017, 1(3): 54-61. (in Chinese with English abstract)
|
[16] |
鄂海红,张文静,肖思琪,等. 深度学习实体关系抽取研究综述[J]. 软件学报,2019,30(6):1793-1818.E Haihong, Zhang Wenjing, Xiao Siqi, et al. Survey of entity-relationship extraction based on deep learning[J]. Journal of Software, 2019, 30(6): 1793-1818. (in Chinese with English abstract)
|
[17] |
Zeng D, Liu K, Lai S, et al. Relation classification via convolutional deep neural network[C]//The 25th International Conference on Computational Linguistics, Dublin, Ireland, 2014: 2335-2344.
|
[18] |
王庆棒,汪颢懿,左敏,等. 基于CNN-BLSTM的食品舆情实体关系抽取模型研究[J]. 食品科学技术学报,2021,39(2):152-158.Wang Qingbang, Wang Haoyi, Zuo Min, et al. Research on entity-relationship extraction model of food public opinion based on CNN-BLSTM[J]. Journal of Food Science and Technology, 2021, 39(2): 152-158. (in Chinese with English abstract)
|
[19] |
Zeng D, Liu K, Chen Y, et al. Distant supervision for relation extraction via piecewise convolutional neural networks[C]//Conference on Empirical Methods in Natural Language Processing, Lisbon, Portugal, 2015: 1753-1762.
|
[20] |
武小平,张强,赵芳,等. 基于BERT的心血管医疗指南实体关系抽取方法[J]. 计算机应用,2021,41(1):145-149.Wu Xiaoping, Zhang Qiang, Zhao Fang, et al. Entity relation extraction method for guidelines of cardiovascular disease based on bidirectional encoder representation from transformers[J]. Journal of Computer Application, 2021, 41(1): 145-149. (in Chinese with English abstract)
|
[21] |
Wang J, Guo Y. Scrapy-based crawling and user-behavior characteristics analysis on taobao[C]// 2012 International Conference on Cyber-Enabled Distributed Computing and Knowledge Discovery, Sanya, China, 2012: 44-52.
|
[22] |
Percuku A, Minkovska D, Stoyanova L. Modeling and processing big data of power transmission grid substation using Neo4j[J]. Procedia Computer Science, 2017, 113: 9-16.
|
[23] |
Holzschuher F, Peinl R. Performance of graph query languages: Comparison of cypher, gremlin and native access in Neo4j[C]//Proceedings of the Joint EDBT/ICDT 2013 Workshops, Genoa, Italy, 2013: 195-204.
|
[24] |
Buckman J, Roy A, Raffel C, et al. Thermometer encoding: One hot way to resist adversarial examples[C]//International Conference on Learning Representations, British Columbia, Canada, 2018: 1-22.
|
[25] |
Mikolov T, Corrado G, Kai C, et al. Efficient Estimation of Word Representations in Vector Space[C]//International Conference on Learning Representations, Arizona, USA, 2013: 1-12.
|
[26] |
Peters M E, Neumann M, Iyyer M, et al. Deep contextualized word representations[C]//Proceedings of NAACL-HLT, Louisiana, USA, 2018: 2227-2237.
|
[27] |
李舟军,范宇,吴贤杰. 面向自然语言处理的预训练技术研究综述[J]. 计算机科学,2020,47(3):170-181.Li Zhoujun, Fan Yu, Wu Xianjun. A review of research on pre-training technology for natural language processing[J]. Computer Science, 2020, 47(3): 170-181. (in Chinese with English abstract)
|
[28] |
Devlin J, Chang M W, Lee K, et al. BERT: Pre-training of deep bidirectional transformers for language understanding[J]. arXiv, 2018,1810,04805.
|
[29] |
陈德光,马金林,马自萍,等. 自然语言处理预训综述[J]. 计算机科学与探索,2021,15(8):1359-1389.Chen Deguang, Ma Jinlin, Ma Ziping, et al. Review of pre-training techniques for natural language processing[J]. Computer Science and Exploration, 2021, 15(8): 1359-1389. (in Chinese with English abstract)
|
[30] |
郑丽敏,任乐乐. 采用融合规则与BERT-FLAT模型对营养健康领域命名实体识别[J]. 农业工程学报,2021,37(20):211-218.Zheng Limin, Ren Lele. Named entity recognition in human nutrition and health domain using rule and BERT-FLAT[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2021, 37(20): 211-218. (in Chinese with English abstract)
|
[31] |
赵鹏飞,赵春江,吴华瑞,等. 基于BERT的多特征融合农业命名实体识别[J]. 农业工程学报,2022,38(3):112-118.Zhao Pengfei, Zhao Chunjiang, Wu Huarui, et al. Recognition of the agricultural named entities with multi-feature fusion based on BERT[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2022, 38(3): 112-118. (in Chinese with English abstract)
|
[32] |
任媛,于红,杨鹤,等. 融合注意力机制与BERT+ BiLSTM+CRF模型的渔业标准定量指标识别[J]. 农业工程学报,2021,37(10):135-141.Ren Yuan, Yu Hong, Yang He, et al. Recognition of quantitative indicator of fishery standard using attention mechanism and the BERT+BiLSTM+CRF model[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2021, 37(10): 135-141. (in Chinese with English abstract)
|
[33] |
Kingma D P, Ba J. Adam: A method for stochastic optimization[J]. arXiv, 2014,1412,06980.
|
[34] |
Mnih, Volodymyr, Heess, et al. Recurrent models of visual attention[J]. arXiv, 2014,1406,06247.
|
[35] |
Cui Y, Che W, Liu T, et al. Pre-training with whole word masking for chinese bert[J]. arXiv, 2019,1906. 08101.
|
[36] |
Lin Y, Shen S, Liu Z, et al. Neural relation extraction with selective attention over instances[C]//Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics, Berlin, Germany, 2016: 2124-2133.
|
[37] |
张彤,宋明艳,王俊,等. 基于PCNN的工业制造领域质量文本实体关系抽取方法[J]. 信息技术与网络安全,2021,40(3):8-13.Zhang Tong, Song Mingyan, Wang Jun, et al. Entity relation extraction method for quality text in industrial manufacturing field based on PCNN[J]. Information Technology and Network Security, 2021, 40(3): 8-13. (in Chinese with English abstract)
|