• EI
    • CSA
    • CABI
    • 卓越期刊
    • CA
    • Scopus
    • CSCD
    • 核心期刊
Lei Jilin, Xiao Shunwen, Deng Wei, Deng Xiwen, Tian Ao, Dong Lin. Influence of fin structure on the strength and heat transfer performance of the cylinder for aviation piston air-cooled engine[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2022, 38(24): 25-34. DOI: 10.11975/j.issn.1002-6819.2022.24.003
Citation: Lei Jilin, Xiao Shunwen, Deng Wei, Deng Xiwen, Tian Ao, Dong Lin. Influence of fin structure on the strength and heat transfer performance of the cylinder for aviation piston air-cooled engine[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2022, 38(24): 25-34. DOI: 10.11975/j.issn.1002-6819.2022.24.003

Influence of fin structure on the strength and heat transfer performance of the cylinder for aviation piston air-cooled engine

More Information
  • Received Date: September 27, 2022
  • Revised Date: December 13, 2022
  • Published Date: December 30, 2022
  • Abstract: An aviation piston air-cooled engine has been widely used in modern agriculture, plant protection, and unmanned aerial vehicles, because of its compact structure with small size, light weight, high thermal efficiency, simple manufacturing process, and low maintenance cost, as well as the low fuel consumption rate. However, the high thermal load has posed a great threat to the aviation piston air-cooled engine. In this study, a novel one-dimensional simulation model was established to determine the influence of fin structure on the strength and heat transfer of cylinder in an aviation piston air-cooled engine using GT-Power software. The aviation air-cooled engine was taken as the horizontally opposed four-cylinder with the four-stroke piston in the gasoline system. The cylinder pressure test was also carried out to evaluate the working pressure in the engine cylinder under calibrated power conditions. The structure and heat transfer were then characterized for the air-cooled engine cylinder. A systematic calculation was made on the boundary conditions of the gas side in the cylinder. A thermocouple was used to measure the working temperature of the key area in the cylinder under the calibrated power condition. After that, a coupled three-dimensional model was established to combine the temperature and heat transfer coefficient of the combustion chamber in the cylinder and each position of the cylinder. A fluid-structure coupling model was achieved in the heat transfer and strength, including the cylinder head, cylinder, crankshaft, crankcase, and cooling air. The temperature and stress distribution of the cylinder were then obtained from the temperature and heat transfer coefficient distribution of the air-cooling field. The average error of 4.8% was calculated to compare the simulation with the in-cylinder pressure test, particularly fully meeting the engineering needs and the subsequent calculation requirements. The average temperature error of each temperature measurement point was less than 5%, when comparing the measured and simulated cylinder temperature. It indicates that the fluid-structure coupling model fully met the calculation requirements. The fin thickness, spacing, and length were selected to analyze the influence of their heat dissipation on the structural strength and heat transfer performance of the cylinder. The results show that different variations were found in the three structural parameters. Specifically, the temperature of the cylinder decreased by 14.5 ℃, whereas, the thermal stress increased by 23.9 MPa, with the increase of fin length. The temperature and thermal stress of the cylinder decreased by 19.8 ℃ and 33.0 MPa, respectively, with the increase in fin thickness. The temperature of the cylinder decreased by 13.5 ℃, whereas, the thermal stress increased by 6.9 MPa, with the increase of fin spacing. Furthermore, the three-factor five-level orthogonal experiment was designed to take the fin thickness, spacing, and length as the factors. The calculation results show that the greatest influence on the cylinder temperature was found from the fin length, followed by the fin thickness, and the fin spacing was the least. The cylinder body temperature of the machine decreased by 18.2 ℃ after optimization, compared with the original. The greatest influence on the structure strength of the cylinder was from the fin thickness, followed by the fin length, and the fin spacing was the least. The maximum thermal stress of the machine decreased by 50.1 MPa after optimization, compared with the original. The findings can provide a strong reference to design and optimize the heat fin of aviation piston air-cooled engines.
  • [1]
    李杰. 活塞式无人机发动机直喷航空煤油喷雾及燃烧特性的试验研究[D]. 天津:天津大学,2019.Li Jie. Experimental Study on Spray and Combustion Characteristics of Direct Injection Aviation Kerosene in a Piston UVA Engine[D]. Tianjin: Tianjin University, 2019. (in Chinese with English abstract)
    [2]
    陈刘忠. 无人机综合热管理系统建模与仿真[D]. 南京:南京航空航天大学,2016.Chen Liuzhong. The Modeling and Simulation of UAV Integrated Thermal Management System[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2016. (in Chinese with English abstract)
    [3]
    董彦非,黄明,李瑞琦. 通用航空发动机发展综述[J]. 西安航空学院学报,2017,35(5):8-13.Dong Yanfei, Huang Ming, Li Ruiqi. Overview of the development of general aviation engines[J]. Journal of Xi'an Aeronautical University, 2017, 35(5): 8-13. (in Chinese with English abstract)
    [4]
    王山. 航空活塞直喷汽油机缸内工作过程特性研究[D]. 北京:北京理工大学,2016.Wang Shan. The Research on Operation Characteristic of Piston Aero-Gasoline Engine[D]. Beijing: Beijing Institute of Technology, 2016. (in Chinese with English abstract)
    [5]
    沈颖刚,聂珂,徐劲松,等. 不同海拔下压燃式航空活塞发动机的燃烧与排放特性[J]. 推进技术,2022,43(4):248-256.Shen Yingang, Nie Ke, Xu Jingsong, et al. Combustion and emission characteristics of compression-ignition aero piston engine at different altitudes[J]. Propulsion Technology, 2022, 43(4): 248-256. (in Chinese with English abstract)
    [6]
    唐梓杰,丁水汀,杜发荣. 小型航空二冲程风冷发动机缸体流固耦合传热的仿真[J]. 航空动力学报,2011,26(1):42-47.Tang Zijie, Ding Shuiting, Du Farong. Simulation of fluid-solid coupled heat transfer of cylinder a small two-stroke air-cooled aero-engine[J]. Journal of Aerospace Power, 2011, 26(1): 42-47. (in Chinese with English abstract)
    [7]
    周龙保. 内燃机学(第二版)[M]. 北京:机械工业出版社,2005:228-260.
    [8]
    李卫东,赵廷渝. 航空活塞动力装置[M]. 成都:西南交通大学出版社,2004.
    [9]
    Zheng X, Luo X, Luo J, et al. Experimental investigation of operation behavior of plate heat exchangers and their influences on organic Rankine cycle performance[J]. Energy Conversion and Management, 2020, 207(3): 112528.
    [10]
    董军启,陈江平,袁庆丰,等. 板翅换热器平直翅片的传热与阻力性能试验[J]. 农业机械学报,2007,38(8):53-56.Dong Junqi, Chen Jiangping, Yuan Qingfeng, et al. Flow and heat transfer on compact smooth fin surfaces[J]. Transactions of the Chinese Society for Agricultural Machinery, 2007, 38(8): 53-56. (in Chinese with English abstract)
    [11]
    杨艳霞,马晴婵,左玉清. 人字形板式换热器流道传热特性及参数优化[J]. 农业工程学报,2019,35(21):210-215.Yang Yanxia, Ma Qingchan, Zuo Yuqing. Heat transfer characteristics and parameter optimization of flow passage of herringbone heat transfer[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2019, 35(21): 210-215. (in Chinese with English abstract)
    [12]
    蔡惠坤,张银亮,廖亦戴,等. 多海拔下不同散热器翅片的性能分析[J]. 华南理工大学学报(自然科学版),2017,45(2):91-98.Cai Huikun, Zhang Yinliang, Liao Yidai, et al. Performance Analysis of different radiator fins at various altitudes[J]. Journal of South China University of Technology (Natural Science Edition), 2017, 45(2): 91-98. (in Chinese with English abstract)
    [13]
    Elsayed M L, Mesalhy O, Kizito J P, et al. Performance of a guided plate heat sink at high altitude[J]. International Journal of Heat and Mass Transfer, 2020, 147: 118926- 118941.
    [14]
    Bajargaan R, Patel A. Self similar flow behind an exponential shock wave in a self-gravitating, rotating, axisymmetric dusty gas with heat conduction and radiation heat flux[J]. Indian Journal of Physics, 2018, 92(9): 1119-1135.
    [15]
    Liu Y C, Sangeorzan B, Alkidas A. Experimental investigations into free-circular upward-impinging oil-jet heat transfer of automotive pistons[J]. SAE International Journal of Engines, 2017, 10(3): 790-801.
    [16]
    邓晰文,雷基林,文均,等. 活塞结构参数对柴油机活塞传热与温度场的影响分析[J]. 农业工程学报,2017,33(10):102-108.Deng Xiwen, Lei Jilin, Wen Jun, et al. Influences of piston structural parameters on heat transfer and temperature field of diesel engine piston[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017, 33(10): 102-108. (in Chinese with English abstract)
    [17]
    童宝宏,张强. 不同工况下柴油机活塞变形的三维有限元分析[J]. 农业工程学报,2010,26(9):159-163.Tong Baohong, Zhang Qiang. 3-D finite element analysis of piston deformation under different operating conditions of diesel engine[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2010, 26(9): 159-163. (in Chinese with English abstract)
    [18]
    邓晰文,林贤衍,贾德文,等. 柴油转子发动机的全可变配气系统优化[J]. 农业工程学报,2021,37(4):114-121.Deng Xiwen, Lin Xianyan, Jia Dewen, et al. Optimization of fully variable valve system in a diesel rotary engine[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2021, 37(4): 114-121. (in Chinese with English abstract)
    [19]
    姬芬竹,杜发荣,徐斌,等. 航空用风冷活塞式发动机热状态研究[J]. 内燃机工程,2014,35(1):35-40.Ji Fenzhu, Du Farong, Xu Bin, et al. Research on Thermal state of air-cooled piston engine for aviation[J]. Chinese Internal Combustion Engine Engineering, 2014, 35(1): 35-40. (in Chinese with English abstract)
    [20]
    陈红岩,李婷. 柴油机活塞-缸套-冷却水系统固流耦合传热研究[J]. 农业机械学报,2006,37(5):37-40.Chen Hongyan, Li Ting. Diesel engine piston-liner coolant system fluid-solid coupling heat transfer[J]. Transactions of the Chinese Society for Agricultural Machinery, 2006, 37(5): 37-40. (in Chinese with English abstract)
    [21]
    辛喆,张克鹏,谢斌,等. 耦合法用于柴油机冷却系统传热的研究[J]. 农业工程学报,2010,26(1):177-181.Xin Zhe, Zhang Kepeng, Xie Bin, et al. Heat transfer in diesel engine cooling system using coupled method[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2010, 26(1): 177-181. (in Chinese with English abstract)
    [22]
    俞小莉,郑飞,严兆大. 内燃机气缸体内表面稳态传热边界条件的研究[J]. 内燃机学报,1987,5(4):42-50.Yu Xiaoli, Zheng Fei, Yan Zhaoda. The research of the boundary conditions of steady thermal conduction on the inner surface of cylinder in internal combustion engines[J]. Transactions of CSICE, 1987,5(4): 42-50. (in Chinese with English abstract)
    [23]
    陈红岩,李迎,李孝禄. 柴油机流固耦合传热仿真研究[J]. 中国计量学院学报,2007,17(4):284-288.Chen Hongyan, Li Ying, Li Xiaolu. Simulation study on the fluid-solid coupled heat transfer of diesel engines[J]. Journal of China Jiliang University, 2007, 17(4): 284-288. (in Chinese with English abstract)
    [24]
    李迎,俞小莉,陈红岩,等. 发动机冷却系统流固耦合稳态传热三维数值仿真[J]. 内燃机学报,2007,25(3):252-257.Li Ying, Yu Xiaoli, Chen Hongyan, et al. 3-D simulation of steady heat-transfer of fluid-solid coupled system in engine coolant system[J]. Transactions of CSICE, 2007, 25(3): 252-257. (in Chinese with English abstract)
    [25]
    赵立峰,李云清,王海鹰,等. 风冷航空发动机的活塞形状恢复研究[J]. 航空动力学报,2009,24(10):2255-2259.Zhao Lifeng, Li Yunqing, Wang Haiying, et al. Piston reshapes study forthe air-cooled engine of aerial vehicle[J]. Journal of Aerospace Power, 2009, 24(10): 2255-2259. (in Chinese with English abstract)
    [26]
    黄润伍,黄荣华,代辉,等. 海拔高度对柴油机活塞温度及热负荷的影响[J]. 内燃机学报,2019,37(3):280-287.Huang Runwu, Huang Ronghua, Dai Hui, et al. Influences of altitude on piston temperature and thermal load of a diesel engine[J]. Transactions of CSICE, 2019, 37(3): 280-287. (in Chinese with English abstract)
    [27]
    王俊, 申立中, 杨永忠, 等. 基于响应曲面法的非道路用高压共轨柴油机设计点优化标定[J]. 农业工程学报, 2017, 33(3):31-39.Wang Jun, Sheng Lizhong, Yang Yongzhong, et al. Optimizing calibration of design points for non-road high pressure common rail diesel engine base on response surface methodology[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017, 33(3): 31-39. (in Chinese with English abstract)
    [28]
    陆瑞松. 内燃机的传热与热负荷[M]. 北京:人民交通出版社,1988.
    [29]
    朱访君,吴坚. 内燃机工作过程数值计算及其优化[M]. 北京:国防工业出版社,1997.
    [30]
    严兆大,郑飞,倪计民,等. 风冷柴油机的传热与热负荷[J]. 内燃机学报,1985,3(1):77-88.Yan Zhaoda, Zheng Fei, Ni Jimin, et al. Heat transfer and thermal loading of air-cooled diesel engines[J]. Transactions of CSICE, 1985, 3(1): 77-88. (in Chinese with English abstract)
  • Cited by

    Periodical cited type(36)

    1. 张斯佳,张建恒,赵帅,杨杰,赵霡,由福英,王贵彦. 多样化轮作对土壤团聚体有机碳氮分布特征的影响. 河北农业大学学报. 2025(01): 1-8 .
    2. 鲁泽让,李永梅,杨春怀,夏梓泰,程伟威,王自林,赵吉霞,范茂攀. 连续周年轮作休耕对土壤团聚体稳定性及有机碳的影响. 环境科学. 2024(03): 1644-1654 .
    3. 李如欣,高其松,于迎鑫,吕艺,韩惠芳. 耕作方式对土壤中微生物残体的影响研究进展. 福建农业学报. 2024(02): 237-242 .
    4. 何家帅 ,李新美 ,魏跃鹏 ,郭航兆 ,杨康娜 ,孙磊康 ,李孝永 ,贾绪存 ,李玉霞 ,李荣发 ,王群 . 长期深耕秸秆还田配施生物炭对砂姜黑土团聚体及小麦-玉米产量的影响. 农业工程学报. 2024(07): 161-171 . 本站查看
    5. 李菁,张广彩,杨力剑,梁兆君,于博洋,张甜,司彤,于晓娜,张晓军,邹晓霞. 不同花生轮作模式对土壤团聚体碳组分的影响. 中国油料作物学报. 2024(03): 613-624 .
    6. 董立国,白晓雄,许浩,胡斯乐,韩新生,王月玲,郭永忠,安钰,万海霞,何钰,蔡进军. 免耕和休耕改善黄绵土水稳性团聚体组成及稳定性. 土壤与作物. 2024(03): 294-304 .
    7. 纪耀坤,刘艳侠,贾利元,赵莉霞. 不同有机肥与基质长期配施对小麦根系生长及土壤改良效果的影响. 江苏农业科学. 2024(17): 65-72 .
    8. 张姝,袁宇含,苑佰飞,段燕,张晋京. 玉米秸秆深翻还田对土壤及其团聚体内有机碳含量和化学组成的影响. 吉林农业大学学报. 2024(05): 731-739 .
    9. 陈佳琦,郭炜,王楠楠,李玉梅,王伟,高中超,孙冬梅. 耕作与秸秆还田方式对不同深度土层团聚体有机碳分布特征的影响. 东北农业大学学报. 2024(08): 100-110 .
    10. 王英,杨森,乔金友,刘自广,何鑫淼,陈海涛. 玉豆轮作下黑土区轮耕模式对土壤坚实度及玉米产量的影响. 东北农业大学学报. 2023(06): 10-19 .
    11. 刘学彤,曹彩云,郑春莲,党红凯,马俊永,李科江. 长期秸秆还田对潮土土壤团聚体碳氮和作物产量的影响. 中国土壤与肥料. 2023(04): 25-33 .
    12. 朱勇,李建业,张程远,张兴义. 长期保护性耕作对坡耕地黑土有机碳组分的影响. 农业工程学报. 2023(10): 103-111 . 本站查看
    13. 樊慧琳,张佳敏,李欢,牛犇,王艳玲. 典型稻田红壤发生层团聚体稳定性及有机碳的含量变化. 土壤通报. 2023(05): 1060-1070 .
    14. 胡敏 ,李越 ,吕轲彦 ,陈志君 ,熊云武 ,黄冠华 . 节水条件下盐碱农田施用有机肥的固碳及其生态系统服务价值提升效应. 农业工程学报. 2023(18): 92-101 . 本站查看
    15. 李园园,郗长军,薛彩霞,柴朝卿,李卫,姚顺波. 陕西省保护性耕作净碳汇的时空演变及差异性分析. 农业工程学报. 2023(23): 123-132 . 本站查看
    16. 朱惠斌,钱诚,白丽珍,赵浩然,马世骜,张旭,李慧. 正反转动力式玉米切茬防堵装置设计与试验. 农业工程学报. 2022(01): 1-11 . 本站查看
    17. 杨彩红,耿艳香,伏星舟,严长庚,柴强. 麦茬免耕对不同麦玉轮作方式土壤有机碳含量的影响. 麦类作物学报. 2022(03): 380-388 .
    18. 陈海涛,邹震,王星,史乃煜,韩广新,侯守印. 免耕播种机侧向清秸覆秸秸秆比例回收装置设计与试验. 农业机械学报. 2022(04): 120-129 .
    19. 段佳茹,王淑颖,李小红,徐香茹,梅秀文,安婷婷,汪景宽. 不同施肥条件下秸秆碳在表层和深层土壤团聚体中的分配与固存. 应用生态学报. 2022(06): 1475-1481 .
    20. 张鑫琪,王迎宾,郝兴宇,宗毓铮,史鑫蕊,李萍. 不同耕作方式对旱地小麦生长发育、生理代谢及产量的影响. 激光生物学报. 2022(03): 278-288 .
    21. 陆峰,廖超林,刘峰峰,肖志鹏,龙飞,向鹏华,唐剑宁,肖孟宇,张永革,单雪华. 烟稻复种连作年限对紫色水稻土团聚体稳定性的影响. 河南农业科学. 2022(07): 85-92 .
    22. 黄国勤. 稻田耕作学理论与实践. 华中农业大学学报. 2022(06): 1-15 .
    23. 彭珏,陈家赢,王军光,蔡崇法. 中国典型地带性土壤团聚体稳定性与孔隙特征的定量关系. 农业工程学报. 2022(18): 113-121 . 本站查看
    24. 陈帅民,梁晓斐,李阳阳,范作伟,徐铭鸿,刘方明,侯中华,王学文,刘慧涛,吴海燕. 秸秆还田配施腐解菌剂对土壤团聚体及其有机碳固持的影响. 玉米科学. 2022(06): 110-117 .
    25. 崔思远,曹光乔. 秸秆还田年数对稻麦轮作农田土壤团聚体碳氮分布的影响(英文). 智能化农业装备学报(中英文). 2022(01): 20-26 .
    26. 于美婷,李春雅,李华泰,刘长莉. 秸秆还田对土壤理化性质影响的研究进展. 江西农业学报. 2021(01): 33-39 .
    27. 乔鑫鑫,李乾云,王艳芳,尹飞,焦念元,付国占,刘领. 豆-麦复种模式对豫西丘陵区土壤团聚体及碳氮含量的影响. 干旱地区农业研究. 2021(03): 145-153 .
    28. 吕奕彤,于爱忠,吕汉强,王玉珑,苏向向,柴强. 绿洲灌区玉米农田土壤团聚体组成及其稳定性对绿肥还田方式的响应. 中国生态农业学报(中英文). 2021(07): 1194-1204 .
    29. 尚小龙,曹建斌,王艳,杨炳南,李道义,王辉. 保护性耕作技术研究现状及展望. 中国农机化学报. 2021(06): 191-201 .
    30. 高强,宓文海,夏斯琦,刘明月,毛伟,居静,赵海涛. 长期不同施肥措施下黄泥田水稻土团聚体组成、稳定性及养分分布特征. 河南农业科学. 2021(06): 70-81 .
    31. 李新悦,李冰,莫太相,王昌全,万艺媛,陈写畅,李和明. 长期秸秆还田对水稻土团聚体及氮磷钾分配的影响. 应用生态学报. 2021(09): 3257-3266 .
    32. 龙泽东,孙梅,罗尊长,孙耿,李超,肖小平. 长期不同耕作方式与秸秆还田对稻田镉生物有效性的影响. 农业环境科学学报. 2021(09): 1888-1896 .
    33. 朱惠斌,钱诚,白丽珍,李慧,牟丹磊,李骏杰. 基于Plackett-Burman试验设计与响应面法优化玉米秸秆离散元模型. 中国农业大学学报. 2021(12): 221-231 .
    34. 于文斌. 保护性耕作技术的应用与推广. 农业技术与装备. 2021(10): 105-106+108 .
    35. 于文竹,魏霞,赵恒策,贺燕,何晓波,吴晓东. 青藏高原高寒草原草甸土壤团聚体及养分因子变化特征. 水土保持学报. 2020(06): 301-308+317 .
    36. 闫雷,董天浩,喇乐鹏,刘鸣一,孙小贺,孟庆尧,张钰莹,张乃文,孟庆峰. 免耕和秸秆还田对东北黑土区土壤团聚体组成及有机碳含量的影响. 农业工程学报. 2020(22): 181-188 . 本站查看

    Other cited types(37)

Catalog

    Article views (283) PDF downloads (111) Cited by(73)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return