Citation: | Kou Dan, Su Derong, Wu Di, Li Yan. Effects of regulated deficit irrigation on water consumption, hay yield and quality of alfalfa under subsurface drip irrigation[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2014, 30(2): 116-123. DOI: 10.3969/j.issn.1002-6819.2014.02.015 |
[1] |
0.7447 Bb0.5561 Cc0.7168 Bb0.7504 Bb0.9657 Aa粗蛋白质量分数Content of CP/%18.73 BCcd19.72 ABCbcd20.49 ABab21.71 Aa21.60 Aa20.28 ABCabc18.17 Cd粗蛋白产量Yield of CP/(kg·hm-2)833.96 Aa802.14 Aab716.67 ABb579.16 Bc810.82 Aab846.11 Aa763.13 Aab注:CP指粗蛋白;大写字母表示变量之间在p<0.01水平差异显著,小写字母表示变量之间在p<0.05水平差异显著。Note: CP=crude protein. The capital letter in the table is significant differences between variables at p<0.01 level, while the small letter is significant differences at p<0.05 level.3 讨 论苜蓿的干草产量是指刈割时苜蓿的地上部分生物量,90%以上的生物量来源于绿色组织的光合作用。调亏灌溉使不同生长阶段苜蓿地的土壤水分处于不同程度的亏缺状态,水分的亏缺抑制了苜蓿的光合作用,从而导致光合产物减少,苜蓿的干草产量下降[1],本文得到了与之一致的结论。另外,文章结果表明,当土壤含水率高于60%FC时,随水分亏缺苜蓿的产量下降不显著,但是低于60%FC时,产量急剧下降,董国锋[10]研究了甘肃秦王川灌区全生育期调亏对紫花苜蓿产量的影响,研究结果也是当土壤含水率低于60%FC时,随亏水程度增加产量出现显著下降。这说明土壤水分低于60%FC时,土壤有效水含量减少,抑制了苜蓿的吸水,紫花苜蓿开始出现干旱胁迫。干旱胁迫的出现一方面使光合作用下降,光合产物减少;另一方面,为了吸收深层土壤水分,提高苜蓿的抗旱能力,分配给苜蓿根系的光合产物的比例增加,导致地上部分的分配比例减少。这两个原因致使苜蓿产量急剧下降。本试验分枝前期和分枝期调亏与现蕾期调亏在产量上未表现出显著性差异。西北旱区地下调亏滴灌对紫花苜蓿的耗水规律有明显的影响。随亏水程度增加,灌溉量不断减少,耗水量不断减少,而水分利用效率不断增大。全生育期调亏,生育期间的耗水强度呈现现蕾期>分枝期>分枝前期的规律,并且随着亏水程度的增加,规律愈加明显。杨磊[16]研究了甘肃民勤荒漠绿洲区调亏灌溉对第一茬紫花苜蓿耗水规律的影响,结果表明现蕾期的耗水强度在各生育期最大,分枝期次之,返青期最低,与本文结果一致。另外,文章结果表明,分枝前期和分枝期调亏的紫花苜蓿,在现蕾期复水后耗水强度有明显补偿效应。产量和品质是紫花苜蓿生产的关键,产量的提高是同化物积累的结果,而品质的改善是同化物在不同物质形态间转化的结果。目前在美国市场上出售的苜蓿,主要根据其粗蛋白含量进行等级划分,按质论价[18-19]。紫花苜蓿的蛋白含量较高,其主要来源是叶片,叶片在整株苜蓿中所占的比例是影响紫花苜蓿蛋白质含量的主要因素。本研究中,无论是全生育期调亏还是针对某个生育期进行调亏,随亏水程度的加重,紫花苜蓿的茎叶比减小,这与Halim[11]、文霞[20]及赵金梅[21]等的研究结果是一致的,并且Halim[11]还指出,水分亏缺条件下紫花苜蓿的茎叶比减小一方面是由于成熟度延迟,另一方面是由于水分亏缺对茎生长的抑制作用大于叶。苏亚丽[22]、文霞[20]等研究表明,灌溉量和粗蛋白含量呈负相关关系,随灌溉量减少,粗蛋白含量逐渐增加,这与本文的研究结果是一致的,这是因为灌溉量增加后,苜蓿茎叶比随之增加,致使叶片在植株中占的比例减小,从而导致粗蛋白含量随灌水量增加而减少。紫花苜蓿在分枝前期及分枝期进行调亏干重茎叶比和粗蛋白含量均高于现蕾期调亏,说明分枝前期及分枝期调亏紫花苜蓿的品质要优于现蕾期调亏。苜蓿经济效益的提高,一方面要提高产量,另一方面要改善品质。虽然亏水会降低紫花苜蓿的茎叶比,提高粗蛋白含量使得品质提高,但是同时亏水会导致苜蓿的产量降低,甚至产量下降的程度要大于粗蛋白含量提高的程度,从而使得粗蛋白产量下降。因此,在紫花苜蓿生产中,单从产量或品质角度来制定灌溉制度是不合理的,应兼顾两者,这就凸显了蛋白质产量这个指标的重要性。试验结果表明,随着亏水程度的加重,紫花苜蓿的粗蛋白产量下降,且与全生育期调亏及现蕾期调亏相比,分枝前期及分枝期调亏对粗蛋白产量的提高更加明显。综合地下调亏滴灌对苜蓿干草产量、干重茎叶比及粗蛋白含量的影响,可以得到,在保证干草产量不显著下降的前提下,处理A5可以显著提高苜蓿品质。粗蛋白产量的结论与之一致。另外,处理A1与A5之间的耗水量无显著差异。综上可以得出,利用地下滴灌将苜蓿分枝前期及分枝期土壤水分调亏到60%FC,而现蕾期充分供水可以实现西北旱区紫花苜蓿的高产、优质、节水生产。4 结 论1)地下滴灌条件下,无论是全生育期调亏还是针对某个生育期进行调亏,随着亏水程度的加重,紫花苜蓿的干草产量下降,且当灌水下限低于60%FC时,全生育期调亏及分枝前期和分枝期调亏苜蓿的干草产量极显著下降,认为在此土壤水分条件下,苜蓿开始出现干旱胁迫。2)地下滴灌条件下,调亏灌溉对苜蓿的耗水规律影响明显。全生育期调亏,生育期间的耗水强度呈现现蕾期>分枝期>分枝前期的规律,并且随着亏水程度的增加,规律愈加明显。分枝前期和分枝期调亏的紫花苜蓿,在现蕾期复水后耗水强度有明显补偿效应。3)地下调亏滴灌影响紫花苜蓿的品质。亏水会导致苜蓿的干重茎叶比下降,粗蛋白含量提高,从而提高苜蓿品质,但是亏水同时会导致苜蓿大幅度减产,从而使粗蛋白产量降低。紫花苜蓿在分枝前期及分枝期进行调亏,不但干重茎叶比和粗蛋白含量均高于现蕾期调亏,而且粗蛋白产量也高于现蕾期调亏。4)地下滴灌条件下,苜蓿分枝前期、分枝期和现蕾期的灌水下限分别为60%FC、60%FC和70%FC可以实现西北旱区紫花苜蓿的高产、优质、节水生产。[参 考 文 献][1]洪绂曾. 苜蓿科学[M]. 北京:中国农业出版社,2009:1-12.
|
[2] |
孙洪仁,刘国荣,张英俊,等. 紫花苜蓿的需水量、耗水量、需水强度、耗水强度和水分利用效率研究[J].草业科学,2005,22(12):24-30.Sun Hongren, Liu Guorong, Zhang Yingjun, et al. Water requirement, water consumption, water requirement rate, water consumption rate and water use efficiency of alfalfa[J]. Pratacultural Science, 2005, 22(12): 24-30. (in Chinese with English abstract)
|
[3] |
李道西,罗金耀. 地下滴灌技术的研究及其进展[J]. 中国农村水利水电,2003,(7):15-17.Li Daoxi, Luo Jinyao. Summary on research and development of subsurface drip irrigation techniques[J]. China Rural Water and Hydropower, 2003,(7): 15-17. (in Chinese with English abstract)
|
[4] |
胡笑涛,康绍忠,马孝义. 地下滴灌灌水均匀度研究现状及展望[J]. 干旱地区农业研究,2000,18(2):113-117.Hu Xiaotao, Kang Shaozhong, Ma Xiaoyi. The statue quo and prospect of uniformity under subsurface drip irrigation[J]. Agricutural Research in the Arid Areas, 2000, 18(2):113-117. (in Chinese with English abstract)
|
[5] |
Hutmacher R B, Phene C J, Mead R M, et al. Subsurface drip and furrow irrigation comparison with alfalfa in the Imperial Valley[C]//In:Proc.2001 California Alfalfa & Forage Symposium, Modesto, CA.
|
[6] |
Godoy A C, Pérez G A, Torres E C A, et al. Water use,forage production and water relations in alfalfa with subsurface drip irrigation[J]. Agrociencia, 2003,37 (2): 107-115.
|
[7] |
Alam M, Trooien T P, Dumler T J, et al. Using subsurface drip irrigation for alfalfa[J]. J. Am. Water Resour. Assoc, 2002, 38(6): 1715-1721.
|
[8] |
刘晓英,罗远培. 干旱胁迫对作物生长后效影响的研究现状[J]. 干旱地区农业研究,2002,20(4):6-9.Liu Xiaoying, Luo Yuanpei. Present situation of study on after-effect of water stress on crop growth[J]. Agricutural Research in the Arid Areas, 2002, 20(4): 6-9. (in Chinese with English abstract)
|
[9] |
何华,耿增超,康绍忠. 调亏灌溉及其在果树栽培上的应用[J]. 西北林学院学报,1999,14(2):83-87.He Hua, Geng Zengchao, Kang Shaozhong. Regulated deficit irrigation and the application on fruit trees[J]. Journal of Northwest Forestry University, 1999, 14(2): 83-87. (in Chinese with English abstract)
|
[10] |
董国锋,成自勇,张自和,等. 调亏灌溉对苜蓿水分利用效率和品质的影响[J]. 农业工程学报,2006,22(5):201-203.Dong Guofeng, Cheng Ziyong, Zhang Zihe, et al. Effects of regulated deficit irrigation on water use efficiency and quality of alfalfa[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2006, 22(5): 201-203. (in Chinese with English abstract)
|
[11] |
Halim R A, Buxton D R, Hattendorf N J, et al. Water-stress effects on alfalfa forage quality after adjustment for maturity differences[J]. Agron. J., 1989,81 (2): 189-194.
|
[12] |
Guitjens J C. Alfalfa irrigation during drought[J]. Journal of Irrigation and Drainage Engineering, 1993, 119(6): 1092-1098.
|
[13] |
庞秀明,康绍忠,王密侠. 作物调亏灌溉理论与技术研究动态及其展望[J]. 西北农林科技大学学报:自然科学版,2005,3(6):141-146.Pang Xiuming, Kang Shaozhong, Wang Mixia. Theory and technology research development and prospect of regulated deficit irrigation on crops[J]. Journal of Northwest Sci-Tech University of Agricultural and Forestry: Natural Science, 2005, 3(6): 141-146. (in Chinese with English abstract)
|
[14] |
郭相平,康绍忠. 调亏灌溉--节水灌溉的新思路[J]. 西北水资源与水工程,1998,9(4):22-26.Guo Xiangping, Kang Shaozhong. Regulated deficit irrigation: a new thought of water-saving irrigation[J]. Northwest water resources and water engineering, 1998, 9(4): 22-26. (in Chinese with English abstract)
|
[15] |
蔡焕杰,康绍忠,张振华,等. 作物调亏灌溉的适宜时间与调亏程度的研究[J]. 农业工程学报,2000,16(3):24-27.Cai Huanjie, Kang Shaozhong, Zhang Zhenhua, et al. Proper growth stages and deficit degree of crop regulated deficit irrigation[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2000, 16(3): 24-27. (in Chinese with English abstract)
|
[16] |
杨磊,杜太生,李志军,等. 调亏灌溉条件下紫花苜蓿生长、作物系数和水分利用效率试验研究[J]. 灌溉排水学报,2008,27(6):102-105.Yang Lei, Du Taisheng, Li Zhijun, et al. Growth, crop coefficient and water use efficiency on field-grown alfalfa under condition of regulated deficit irrigation[J]. Journal of Irrigation and Drainage, 2008, 27(6): 102-105. (in Chinese with English abstract)
|
[17] |
张杰,贾志宽,韩清芳. 不同养分对苜蓿茎叶比和鲜干比的影响[J]. 西北农业学报,2007,16(4):121-125.Zhang Jie, Jia Zhikuan, Han Qingfang. The effect of different fertilization on stem/leaf ratio and FW/DW ratio of alfalfa[J]. Acta Agriculturae Boreali-occidentalis Sinina, 2007, 16(4): 121-125. (in Chinese with English abstract)
|
[18] |
寇江涛,师尚礼,蔡卓山. 垄沟集雨种植对旱作紫花苜蓿生长特性及品质的影响[J]. 中国农业科学,2010,43(24):5028-5036.Kou Jiangtao, Shi Shangli, Cai Zhuoshan. Effects of ridge and furrow rainfall harvesting on growth characteristics and quality of Medicago sativa in dryland[J]. Scientia Agricultura Sinica, 2010, 43(24): 5028-5036. (in Chinese with English abstract)
|
[19] |
张春梅,王成章,胡喜峰,等. 紫花苜蓿的营养价值及应用研究进展[J]. 中国饲料,2005,(1):15-17.Zhang Chunmei, Wang Chengzhang, Hu Xifeng, et al. Research progress of alfalfa nutrients and application[J]. China Feed, 2005,(1): 15-17. (in Chinese with English abstract)
|
[20] |
文霞,侯向阳,穆怀彬. 灌水量对京南地区紫花苜蓿生产能力的影响[J]. 草业科学,2010,27(4):73-77.Wen Xia, Hou Xiangyang, Mu Huaibin. Effects of irrigation amount on alfalfa productivity in south of Beijing[J]. Pratacultural Science, 2010, 27(4): 73-77. (in Chinese with English abstract)
|
[21] |
赵金梅,周禾,郭继承,等. 灌溉对紫花苜蓿生产性能的影响[J]. 草原与草坪,2007,(1):38-41.Zhao Jinmei, Zhou He, Guo Jicheng, et al. Effect of irrigation on alfalfa productivity[J]. Grassland and Turf, 2007,(1): 38-41. (in Chinese with English abstract)
|
[22] |
苏亚丽,张力君,孙启忠,等. 水肥耦合对敖汉苜蓿营养成分的影响[J]. 草地学报,2011,19(5):821-824.Su Yali, Zhang Lijun, Sun Qizhong, et al. Effects of variable water and nutrient regimes on nutrients of alfalfa[J]. Acta Agrestia Sinica, 2011, 19(5): 821-824. (in Chinese with English abstract)
|
[1] | Xiao Tianpu, Yang Li, Zhang Dongxing, Wang Liangju, Zhang Tianliang, Du Zhaohui, Li Hongsheng, Xia Xulong. Vertical distribution of photosynthetic characteristics of maize leaves at the seedling stage using chlorophyll fluorescence imaging[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2022, 38(16): 162-171. DOI: 10.11975/j.issn.1002-6819.2022.16.018 |
[2] | Deng Shangqi, Zhao Yu, Bai Xueyuan, Li Xu, Sun Zhendong, Liang Jian, Li Zhenhai, Cheng Shu. Inversion of chlorophyll and leaf area index for winter wheat based on UAV image segmentation[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2022, 38(3): 136-145. DOI: 10.11975/j.issn.1002-6819.2022.03.016 |
[3] | Liu Tao, Zhang Huan, Wang Zhiye, He Chao, Zhang Quanguo, Jiao Youzhou. Estimation of the leaf area index and chlorophyll content of wheat using UAV multi-spectrum images[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2021, 37(19): 65-72. DOI: 10.11975/j.issn.1002-6819.2021.19.008 |
[4] | Shi Jiyong, Li Wenting, Hu Xuetao, Huang Xiaowei, Li Zhihua, Guo Zhiming, Zou Xiaobo. Diagnosis of nitrogen and magnesium deficiencies based on chlorophyll distribution features of cucumber leaf[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2019, 35(13): 170-176. DOI: 10.11975/j.issn.1002-6819.2019.13.019 |
[5] | Gong Binbin, Wang Ning, Zhang Tiejun, Wu Xiaolei, Lü Guiyun, Chu Xinpei, Gao Hongbo. Selection of tomato seedling index based on comprehensive morphology and leaf chlorophyll content[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2019, 35(8): 237-244. DOI: 10.11975/j.issn.1002-6819.2019.08.028 |
[6] | Sun Hong, Zheng Tao, Liu Ning, Cheng Meng, Li Minzan, Zhang Qin. Vertical distribution of chlorophyll in potato plants based on hyperspectral imaging[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2018, 34(1): 149-156. DOI: 10.11975/j.issn.1002-6819.2018.01.020 |
[7] | Wang Qiang, Yi Qiuxiang, Bao Anming, Luo Yi, Zhao Jin. Estimating chlorophyll density of cotton canopy by hyperspectral reflectance[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2012, 28(15): 125-132. |
[8] | Huang Chunyan, Wang Dengwei, Zhang YuXing. Estimation of cotton canopy chlorophyll density and leaf area index based on red-edge parameters[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2009, 25(13): 137-141. |
[9] | Song Kaishan, Zhang Bai, Wang Zongming, Liu Huanjun, Duan Hongtao. Inverse model for estimating soybean chlorophyll concentration using in-situ collected canopy hyperspectral data[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2006, 22(8): 16-21. |
[10] | Zhao Chunjiang, Huang Wenjiang, Wang Jihua, Liu Liangyun, Song Xiaoyu, Ma Zhihong, Li Cunjun. Extracting winter wheat chlorophyll concentration vertical distribution based on bidirectional canopy reflected spectrum[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2006, 22(6): 104-109. |