Citation: | Qiu Jing, Dong Qingli, Cheng Fei. Establishment of growth probability model for Pseudomonas spp. in chilled pork with modified atmosphere package[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2012, 28(13): 257-262. |
[1] |
Ercolini D, Russo F, Torrieri E, et al. Changes in the spoilage-related microbiota of beef during refrigerated storage under different packaging conditions[J]. Applied and Environmental Microbiology, 2006, 72(7): 4371-4663.
|
[2] |
McMillin K W. Where is MAP Going? A review and future potential of modified atmosphere packaging for meat[J]. Meat Science, 2008, 80(1): 43-65.
|
[3] |
Bórnez R, Linares M B, Vergara H. Effect of different gas stunning methods on Manchega suckling lamb meat packed under different modified atmospheres[J]. Meat Science, 2010, 84(4): 727-734.
|
[4] |
Marsh K, Bugusu B. Food packaging-Roles, materials, and environmental issues[J]. Food Science, 2007, 72(3): R39-R55.
|
[5] |
Mcdonald K, Sun D W. Predictive food microbiology for the meat industry: a review [J]. International Journal of Food Microbiology, 1999, 52(1/2): 1-27.
|
[6] |
Mejlholm O, Gunvig A, Borggaard C, et al. Predicting growth rates and growth boundary of Listeria monocytogenes- An international validation study with focus on processed and ready-to-eat meat and seafood[J]. International Journal of Food Microbiology, 2010, 141(3): 137-150.
|
[7] |
Geysen S, Geeraerd A H, Verlinden BE, et al. Predictive modelling and validation of Pseudomonas fluorescens growth at at superatmospheric oxygen and carbon dioxide concentrations[J]. Food Microbiology, 2005, 22(2/3): 149-158.
|
[8] |
Sutherland J P, Bayliss A J, Braxton D S. Predictive modeling of growth of Escherichia coli O157:H7: the effects of temperature, pH and sodium chloride[J]. International Journal of Food Microbiology, 1995(25): 29-49.
|
[9] |
Neumeyer K, Ross T, McMeekin T A. Development of a predictive model to describe the effects of temperature and water activity on the growth of spoilage pseudomonads[J].International Journal of Food Microbiology, 1997, 38(1): 45-54.
|
[10] |
Valero A, Podríguez M, Carrasco E, et al. Studying the growth boundary and subsequent time to growth of pathogenic Escherichia coli serotypes by turbidity measurements[J]. Food Microbiology, 2010, 27(6): 819-828.
|
[11] |
Couvert O, Pinon A, Bergis H, et al. Validation of a stochastic modelling approach for Listeria monocytogenes growth in refrigerated foods[J]. International Journal of Food Microbiology, 2010(144): 236-242.
|
[12] |
Souza Sant′Ana A, Dantigny P, Tahara A C, et al. Use of a logistic model to assess spoilage by Byssochlamys fulva in clarified apple juice[J]. International Journal of Food Microbiology, 2010, 137(2/3): 299-302.
|
[13] |
Hwang C. The probability of growth of Listeria monocytogenes in cooked salmon and tryptic soy broth as affected by salt, smoke compound, and storage temperature[J]. Food Microbiology, 2009, 26(3): 253-258.
|
[14] |
陈天寿. 微生物培养基的制造与应用[M].北京:中国农业出版社,1995,250-579.
|
[15] |
李学英,杨宪时,郭全友,等. 大黄鱼腐败菌腐败能力的初步分析[J]. 食品工业科技,2009,30(6):316-319.Li Xueying, Yang Xianshi, Guo Quanyou, et al. Preliminary analysis on the ability to spoilage of Pseudosciaena crocea' spoilage bacteria[J]. Science and Technology of Food Industry, 2009, 30(6): 316-319. (in Chinese with English Abstract)
|
[16] |
董庆利,曾静,丁甜,等. 猪肉中气单胞菌生长与失活的Gompertz模型构建[J]. 食品科学,2011,32(11):118-122.Dong QingLi, Zeng Jing, Ding Tian, et al. Establishment of Gompertz Model for the Growth and Inactivation of Aeromonas spp. in Pork[J]. Food Science, 2011, 32(11): 118-122. (in Chinese with English Abstract)
|
[17] |
GB/4789.2-2008,食品卫生微生物学检验菌落总数测定[S]. 北京:中国标准出版社,2009-3-1.GB/4789.2-2008, Microbiological determination of total colonies numbers in food and hygiene[S]. Beijing: The Publishing House of the Chinese standard, 2009-3-1. (in Chinese with English Abstract)
|
[18] |
Le Marc Y, Pin C, Baranyi J. Methods to determine the growth domain in a multidimensional environmental space[J]. International Journal of Food Microbiology, 2005, 100(1/2/3): 3-12.
|
[19] |
Dang T D T, Mertens L, Vermeulen A, et al. Modelling the growth/no growth boundary of Zygosaccharomyces bailii in acidic conditions : A contribution to the alternative method to preserve foods without using chemical preservatives[J]. International Journal of Food Microbiology, 2010, 137(1): 1-12.
|
[20] |
McKellar R C, Lu X, Delaquis P J. A probability model describing the interface between survival and death of Escherichia coli O157: H7 in a mayonnaise model system[J]. Food Microbiology, 2002, 19(2/3): 235-247.
|
[21] |
Ratkowsky D A, Ross T. Modelling the bacterial growth/no growth interface[J]. Letters in Applied Microbiology, 1995, 20(1): 29-33.
|
[22] |
LopezMalo A, Palou E. Modeling the growth/no-grwoth interface of Zygosaccharomyces bailii in mango puree[J]. Food Science, 2000(65): 516-520.
|
[23] |
马丽珍,南庆贤,戴瑞彤. 不同气调包装方式的冷却猪肉在冷藏过程中的微生物变化[J]. 农业工程学报,2004,20(4):160-164.Ma Lizhen, Nan Qingxian, Dai Ruitong. Microflora changes of chilled pork packaged in different modified atmosphere packages[J]. Transactions of The Chinese Society of Agricultural Engineering, 2004, 20(4): 160-164. (in Chinese with English Abstract)
|
[24] |
Koutsoumanis K P, Stamatiou A P, Drosinos E H. Control of spoilage microorganisms in minced pork by a self developed modified atmosphere induced by the respiratory activity of meat flora[J]. Food Microbiology, 2008, 25(7): 915-921.
|
[25] |
Soldatou N, Nerantzaki A, Kontominas M G, et al. Physicochemical and microbiological changes of 'Souvlaki'-A Greek delicacy lamb meat product : Evaluation of shelf-life using microbial, color and lipid oxidation parameters[J]. Food Chemistry, 2009, 113(1): 36-42.
|
[26] |
Ravi Sankar C N, Lalitha K V, Jose L, et al. Effect of packaging atmosphere on the microbial attributes of pearlspot (Etroplus suratensis Bloch) stored at 0~2℃[J]. Food Microbiology,2009, 25(3): 518-528.
|
[27] |
Vermeulen A, Gysemans K P M, Bernaerts K, et al. Modelling the influence of the inoculation level on the growth/no growth interface of Listeria monocytogenes as a function of pH, aw and acetic acid[J]. International Journal of Food Microbiology, 2009, 135(2): 83-89.
|
[28] |
Skandamis P N, Stopforth J D, Kendall P A, et al. Modeling the effect of inoculum size and acid adaptation on growth/no growth interface of Escherichia coli O157:H7[J]. International Journal of Food Microbiology, 2007, 120(3): 237-249.
|
[29] |
Bidlas E, Du T, Lambert R J W, et al. An explanation for the effect of inoculum size on MIC and the growth/no growth interface[J]. International Journal of Food Microbiology, 2008, 126(1/2):140-152.
|
[30] |
Zhao L, Montville T J, Schaffner D W. Inoculum size of Clostridium botulinum 56A spores influence time-to-detection and percent growth-positive sample[J]. Food Science, 2000, 65(8): 1360-1375.
|
[31] |
Valero A, Pérez-Rodríguez F, Carrasco E, et al. Modelling the growth boundaries of Staphylococcus aureus: Effect of temperature, pH and water activity[J]. International Journal of Food Microbiology, 2009, 133(1/2): 186-194.
|