• EI
    • CSA
    • CABI
    • 卓越期刊
    • CA
    • Scopus
    • CSCD
    • 核心期刊
Yang Shichen, Wan Mingding, Shen Lizhong, Wang Zhengjiang, Huang Fenlian. Optimization of transient VNT opening of diesel engines[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2021, 37(6): 35-41. DOI: 10.11975/j.issn.1002-6819.2021.06.005
Citation: Yang Shichen, Wan Mingding, Shen Lizhong, Wang Zhengjiang, Huang Fenlian. Optimization of transient VNT opening of diesel engines[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2021, 37(6): 35-41. DOI: 10.11975/j.issn.1002-6819.2021.06.005

Optimization of transient VNT opening of diesel engines

More Information
  • Received Date: January 14, 2021
  • Revised Date: March 04, 2021
  • Published Date: March 14, 2021
  • Abstract: The opening of a variable nozzle turbocharger (VNT) has a significant impact on the boost pressure, torque response, and emissions of a diesel engine under transient conditions. In order to achieve better diesel engine transient performance, realize the coordinate control of the diesel engine and the VNT nozzle opening and to improve the transient response of the diesel engine while reducing the emissions. In this study, the VNT opening was calibrated on the bench of a high-pressure common-rail diesel engine for better performance. A bench test was conducted to investigate the effect of VNT openings on the transient performance and emissions of diesel engine at the rotation rate of 1 600, 2 000, and 2 600 r/min, when the response load was transient from 0 to 50%, 75%, and 100% at 1, 3, and 5 s of an accelerator pedal. The results show that there was a much more obvious effect of VNT opening on the transient condition of load response time 1, 3, and 5 s from 0 to 50%, 75%, and 100% of the load at 2 000 r/min than that of 3 and 5 s. The response time of boost pressure gradually decreased, while the response time of torque decreased and then increased, as the VNT opening decreased. The NOx volume fraction first increased, then decreased, and finally increased to a stable value, when the response time of accelerator pedal at 1s from 0% to 50%, 75% and 100% at 1 600, 2 000 and 2 600 r/min. The particle number (PN) emission increased gradually with the decrease of VNT opening. A World Harmonized Transient Cycle (WHTC) test was carried out after the optimum VNT opening was obtained at different speeds. The simulation data showed that the VNT opening reduced the intercept and standard deviation for the WHTC cycle torque regression line. The intercept decreased by 0.03 and 0.37 in cold and hot states, while the standard deviation decreased by 0.11 and 1.07, respectively. The NOx brake specific emissions decreased by 7.59% and 2.21% under the WHTC cold and hot cycles, while the particulate matter (PM) brake specific emissions reduced by 8.64% and 25.28%, and the PN brake specific emissions dropped by 6.74% and 12.4%, compared with the original engine. After optimizing the VNT opening, the standard deviation of the actual torque value from the reference value is reduced, and the main pollutants are reduced in different proportions, which shows the feasibility of the coordinated control of the VNT opening to optimize the transient performance and emissions of the diesel engine. The finding can provide a sound reference for the coordinated control of VNT opening under transient operating conditions in a diesel engine.
  • [1]
    黄粉莲,纪威,周炜,等. 车用涡轮增压柴油机加速工况瞬态特性仿真[J]. 农业工程学报,2014,30(3):63-69.Huang Fenlian, Ji Wei, Zhou Wei, et al. Simulation of transient performance of vehicle turbocharged diesel engine during acceleration process[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2014, 30(3): 63-69. (in Chinese with English abstract)
    [2]
    Yum K K, Lefebvre N, Pedersen E. An experimental investigation of the effects of cyclic transient loads on a turbocharged diesel engine[J]. Applied Energy, 2017, 185: 472-481.
    [3]
    Vafaie M H, Dehkordi B M, Moallem P, et al. A new predictive direct torque control method for improving both steady-state and transient-state operations of the PMSM. IEEE Transactions on power electron, 2015, 31(5), 3738-3753.
    [4]
    张众杰,刘瑞林,夏南龙,等. 车用柴油机瞬态特性劣变机理及优化策略[J]. 军事交通学院学报,2018,20(8):34-39.Zhang Zhongjie, Liu Ruilin, Xia Nanglong, et al. Transient performance deterioration mechanism and optimization strategy for vehicle diesel engine[J]. Journal of Military Transportation University, 2018, 20(8): 34-39. (in Chinese with English abstract)
    [5]
    董天普,张付军,刘波澜,等. EGR对涡轮增压柴油机瞬态特性的影响[J]. 内燃机学报,2017,35(2):118-124.Dong Tianpu, Zhang Fujun, Liu Bolan, et al. Effect of EGR on transient characteristics of turbocharged diesel engine[J]. Transactions of CSICE, 2017, 35(2): 118-124. (in Chinese with English abstract)
    [6]
    田径,刘忠长,许允,等. 柴油机瞬变过程烟度排放的劣变分析[J]. 内燃机学报,2016,34(2):125-134.Tian Jing, Liu Zhongchang, Xu Yun, et al. Analysis of soot deterioration in diesel transient process[J]. Transactions of CSICE. 2016, 34(2):125-134. (in Chinese with English abstract)
    [7]
    Kang H, Farrell P. Experimental investigation of transient emissions (HC and NOx) in a high speed direct injection (HSDI) diesel engine[C]//SAE 2005 Powertrain & Fluid Systems Conference & Exhibition, 2005.
    [8]
    王敏,杨蓉,叶洲,等. 商用车用电控柴油机增转矩工况的燃烧特性分析[J]. 内燃机工程,2020,41(5):23-31.Wang Min, Yang Rong, Ye Zhou, et al. Research on combustion characteristics of electronically controlled diesel engine for commercial vehicles at torque-increasing condition[J]. Chinese Internal Combustion Engine Engineering, 2020, 41(5): 23-31. (in Chinese with English abstract)
    [9]
    田荐伊,陆国祥,徐宏明. 可变增量的EGR控制策略对柴油机瞬态排放的影响[J]. 内燃机学报,2016,34(5):394-400.Tian Jianyi, Lu Guoxiang, Xu Hongming. Incremental variable EGR strategy for optimizing transient emissions of turbo-charged diesel engines[J]. Transactions of CSICE. 2016, 34(5): 394-400. (in Chinese with English abstract)
    [10]
    Saad S M, Mishra R. Performance of a heavy-duty turbocharged diesel engine under the effect of air injection at intake manifold during transient operations[J]. Arabian Journal for Science and Engineering, 2019, 44(6): 5863-5875.
    [11]
    Rakopoulos C D, Dimaratos A M, Giakoumis E G, et al. Exhaust emissions estimation during transient turbocharged diesel engine operation using a two-zone combustion model[J]. International Journal of Vehicle Design, 2009, 49(1-3): 125-149.
    [12]
    Filipi Z, Wang Y, Assanis D. Variable geometry turbine (VGT) strategies for improving diesel engine in-vehicle response: A simulation study[J]. International Journal of Heavy Vehicle Systems, 2004, 11(3): 303-326.
    [13]
    Gurel Cetin, Ozmen Elif, Yilmaz Metin, et al. Multi-objective optimization of transient air-fuel ratio limitation of a diesel engine using DoE based pareto-optimal approach[C]//SAE 2017 World Congress Experience, 2017.
    [14]
    Filipi Z, Wang Y, Assanis D N. Effect of variable geometry turbine (VGT) on diesel engine and vehicle system transient response[C]//SAE 2001 World Congress, 2001.
    [15]
    周鹏程,王银燕,王贺春,等. 可变截面涡轮增压瞬态性能仿真研究[J]. 船舶工程,2018,40(1):76-80.Zhou Pengcheng, Wang Yinyan, Wang Hechun, et al. Simulation study of transient characteristics of variable geometry turbocharging[J]. Ship Engineering, 2018, 40(1): 76-80. (in Chinese with English abstract)
    [16]
    张众杰,刘瑞林,林春城,等. 二级可调增压柴油机高海拔瞬态特性仿真[J]. 内燃机学报,2019,37(5):393-400.Zhang Zhongjie, Liu Ruilin, Lin Chuncheng, et al. Simulation on transient characteristics of regulated two-stage-turbocharged diesel engine at high altitudes[J]. Transactions of CSICE, 2019, 37(5): 393-400. (in Chinese with English abstract)
    [17]
    Wijetunge R S, Hawley J G, Vaughan N D. An exhaust pressure control strategy for a diesel engine[J]. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 2004, 218(4): 449-464.
    [18]
    Black J, Eastwood P G, Tufail K, et al. The effect of VGT vane control on pumping losses during full-load transient operation of a common-rail diesel engine[C]//SAE 2007 8th International Conference on Engines for Automobiles, 2007.
    [19]
    孙万臣,韩永强,刘忠长,等. 可变喷嘴涡轮增压器对车用柴油机瞬态性能的影响[J]. 汽车工程,2006,28(2):122-124.Sun Wanchen, Han Yongqiang, Liu Zhongchang, et al. Effect of variable nozzle turbocharger on transient performance of automotive diesel engine[J]. Automotive Engineering, 2006, 28(2): 122-124. (in Chinese with English abstract)
    [20]
    杨殿勇,王忠,历宝录,等. VNT增压柴油机与整车速度瞬态响应的试验分析[J]. 车用发动机,2005(5):44-47.Yang Dianyong, Wang Zhong, Li Baolu, et al. Analysis of the velocity transient response of VNT in turbocharged diesel &vehicle[J]. VEHICLE ENGINE, 2005(5): 44-47. (in Chinese with English abstract)
    [21]
    施新,张双双,李斌. 可变几何涡轮与压气机协同调节对柴油机瞬态性能影响的仿真研究[J]. 汽车工程,2014,36(9):1046-1050.Shi Xin, Zhang Shuangshuang, Li Bin. A simulation study on the effect of coordinated regulation between VGT and VGC on the transient performance of diesel engine[J]. Automotive Engineering, 2014, 36(9): 1046-1050. (in Chinese with English abstract)
    [22]
    TufailK, Winstanley T, Karagiorgis S, et al. Characterisation of diesel engine transient pumping-loss and control methodology for transient specific fuel consumption (SFC)[C]//SAE 2009 Powertrains Fuels and Lubricants Meeting, 2009
    [23]
    Llamas X, Eriksson L. Optimal transient control of a heavy duty diesel engine with EGR and VGT[J]. IFAC Proceedings Volumes, 2014, 47(3): 11854-11859.
    [24]
    Han Y, Zhang L, Liu Z, et al. Investigation of transient deterioration mechanism and improved method for turbocharged diesel engine[J]. Energy, 2016, 116: 250-264.
    [25]
    郑广勇,于秀敏,侯福建,等. 通过增压器匹配提高发动机瞬态性能[J]. 吉林大学学报:工学版,2013,43(1):45-50.Zheng Guangyong, Yu Xiumin, Hou Fujian, et al. Turbocharger matching to improve engine transient performance[J]. Journal of Jilin University: Engineering and Technology Edition, 2013, 43(1): 45-50. (in Chinese with English abstract)
    [26]
    熊兴旺,高俊华,周涛,等. 基于WHTC循环的柴油机颗粒物数量峰值的研究[J]. 汽车工程,2017,39(4):381-385.Xiong Xingwang, Gao Junhua, Zhou Tao, et al. A study on particulate number peaks in a diesel engine based on WHTC cycle[J]. Automotive Engineering, 2017, 39(4): 381-385. (in Chinese with English abstract)
    [27]
    国家市场监督管理总局. 重型柴油车污染物排放限值及测量方法(中国第六阶段):GB17691-2018[S]. 北京:中国环境科学出版社,2018.
    [28]
    Bai S Z, Han J L, Liu M, et al. Experimental investigation of exhaust thermal management on NOx emissions of heavy-duty diesel engine under the world Harmonized transient cycle (WHTC)[J]. Applied Thermal Engineering, 2018, 142: 421-432.
    [29]
    Zamboni G, Moggia S, Capobianco M. Effects of a dual-loop exhaust gas recirculation system and variable nozzle turbine control on the operating parameters of an automotive diesel engine[J]. Energies, 2017, 10(1): 47.
    [30]
    Wu B Y, Zhan Q, Yu X Y, et al. Effects of miller cycle and variable geometry turbocharger on combustion and emissions in steady and transient cold process[J]. Applied Thermal Engineering, 2017, 118: 621-629.
  • Related Articles

    [1]Ding Jingtao, Zhang Yuhua, Cheng Hongsheng, Shen Yujun, Song Liqiu. Establishment of environmental impact assessment index system on agricultural planning[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017, 33(7): 177-182. DOI: 10.11975/j.issn.1002-6819.2017.07.023
    [2]Qiu Yuanfeng, Meng Ge, Lei Shenglong. Evaluation index system for rural water conservancy modernization in China[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2016, 32(20): 171-178. DOI: 10.11975/j.issn.1002-6819.2016.20.022
    [3]Yang Liu, Wang Ni, Xie Jiancang, Jing Xiaolong. Index optimization of eco-environment evaluation in irrigation district based on multi-source information fusion decision[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2015, 31(14): 225-231. DOI: 10.11975/j.issn.1002-6819.2015.14.031
    [4]Yao Chengsheng, Teng Yi, Huang Lin. Evaluation index system construction and empirical analysis on food security in China[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2015, 31(4): 1-10. DOI: 10.3969/j.issn.1002-6819.2015.04.001
    [5]Qian Jianping, Liu Xuexin, Yang Xinting, Xing Bin, Ji Zengtao. Construction of index system for traceability granularity evaluation of traceability system[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2014, 30(1): 98-104. DOI: 10.3969/j.issn.1002-6819.2014.01.013
    [6]Zhao Liqin, Guo Yuming, Zhang Peizeng, Han Zhanxing. Construction and gray evaluation of the performance index system of wheat no-tillage planter[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2009, 25(5): 89-93.
    [7]Chen Yu, Yang Gaihe, Feng Yongzhong, Ren Guangxin. Index system for regional suitability evaluation of trinity biogas ecosystem[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2009, 25(3): 174-178.
    [8]Yuan Xiujie, Zhao Gengxing, Zhu Xuexin. Linkage of evaluation index system for cultivated land fertility evaluation in plain and hill regions[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2008, 24(7): 65-71.
    [9]Li Yan, Zhao Gengxing, Wang Ailing, Zhang Ren. Evaluation index system for land consolidation benefit and itsapplication[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2006, 22(10): 98-101.
    [10]Zhang Yong, Zeng Lan, Wu Bingfang. Index systems for regional food security early warning[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2004, 20(3): 192-196.
  • Cited by

    Periodical cited type(21)

    1. 张召召,雷金洋. 基于频域反射的环式农田土壤水分传感器的开发与试验验证. 南水北调与水利科技(中英文). 2024(02): 265-271 .
    2. 马尤林. 黔西南州兴仁县贞龙中型灌区节水配套改造工程分析评估研究. 水利科技与经济. 2024(06): 100-104 .
    3. 徐凯,沈建强,刘敏昊,杨开静,白明皓,雷波,徐立荣,翟林鹏. 基于C-D生产函数的灌区节水贡献率研究. 中国农村水利水电. 2024(07): 234-240+254 .
    4. 粟洨悦,陈万林,徐志芬,陈菁,岳琼,马隰龙,李金刚. 都江堰灌区水-能源-粮食系统耦合协调分析. 华北水利水电大学学报(自然科学版). 2024(06): 32-40 .
    5. 申欣鑫,黎红梅. 续建配套与节水改造对粮食综合生产能力的影响研究——基于湖南省14个市州大型灌区的实证分析. 中国农业资源与区划. 2024(09): 42-53 .
    6. 向宇轩,赵鑫,牛攀,艾武,崔宁博,陈飞. 智慧灌溉技术推广效应评价体系研究与实证. 节水灌溉. 2024(12): 72-79+94 .
    7. 黄玮,余小罗,裴青宝,宋奕欣,韩雨. 灌区灌溉功能健康评价与分析——以江西省永丰县为例. 江西水利科技. 2024(06): 458-463 .
    8. 赵文琦,孙栋元,周敏,惠磊,张发荣,徐宝山,崔艳强,马亚丽,盛彩红. 疏勒河流域现代化灌区建设评价研究. 水利规划与设计. 2023(02): 17-22 .
    9. 张欣,张保祥,李冰,吴振. 基于用水定额的区域节水评价方法及应用. 南水北调与水利科技(中英文). 2023(01): 95-106 .
    10. 王莹,谭美仙,陈正发,李重庆,李靖. 高原山地绿色农田健康水循环评价指标体系. 排灌机械工程学报. 2023(05): 511-518 .
    11. 雪宝,汤骅,程泉,俞靖,刘洪光,张志远. 基于熵权TOPSIS法的灌溉用水效率评价. 灌溉排水学报. 2023(05): 82-89+107 .
    12. 杨盛贇,王洁,彭亚敏,陈菁,陈丹. 灌区高质量发展判断准则与评价指标研究. 中国农村水利水电. 2023(06): 236-241+248 .
    13. 余幸,王艳华,景明,罗玉丽,杨健,曹起章,吕望. 大中型灌区高质量发展现状评价指标体系构建与实证. 人民黄河. 2023(08): 21-25 .
    14. 张立志,李小军,谢文鹏. 山东省灌区节水评价指标的筛选与应用分析. 山东水利. 2023(07): 25-27+30 .
    15. 王腾,李佳,付尧,郑慧,赵永峰,李俊,樊才睿. 基于层次分析-熵权法的内蒙古农牧交错带农业用水水平综合评价. 水土保持学报. 2023(05): 259-266 .
    16. 赵杰. 面向农田灌区水利泵站工程的决策优化研究. 水利科技与经济. 2023(10): 113-117 .
    17. 李珊珊,曹顶业,沈桂莹,李国栋. 基于机器学习和全局敏感性的弧形闸门淹没特性. 农业工程学报. 2023(15): 25-33 . 本站查看
    18. 朱洁,刘学军,蒋佳莉. 基于FAHP法的宁夏现代化生态灌区健康评价体系研究与实证. 节水灌溉. 2023(11): 121-129 .
    19. 任盼,费良军,冯缠利,同海丽,姜瑞瑞,介飞龙,高旭艳,陈思远. 基于模糊层次分析法的节水型生态灌区综合评价. 灌溉排水学报. 2022(07): 129-139 .
    20. 刘恬恬,李子明,胡雅琪,马蒙,吴文勇. 灌溉渠系优化配水模型与算法研究进展. 节水灌溉. 2022(11): 51-58 .
    21. 聂超甲,叶回春,张世文,郭佳炜,崔贝,黄文江. 海南岛农业台风灾害风险评估与可持续发展对策. 农业工程学报. 2022(23): 237-246 . 本站查看

    Other cited types(13)

Catalog

    Article views (907) PDF downloads (545) Cited by(34)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return