Citation: | ZHANG Shengmao, LI Jiakang, TANG Fenghua, et al. Research progress on fish farming monitoring based on deep learning technology[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2024, 40(5): 1-13. DOI: 10.11975/j.issn.1002-6819.202311047 |
In recent years, with the rapid development and expansion of the global aquaculture industry, and the continuous enlargement of aquaculture farms, the industrialization, intelligence, and informatization of aquaculture have become a trend in the industry. China has become the largest producer of fisheries and aquaculture. Fish farming is an important component of aquaculture, and fish farming monitoring has become an important technology to enhance the efficiency, production, and management of fish farming. Fish farming monitoring can provide real-time and accurate data for farms, assisting farm managers in making decisions to improve efficiency and production. With the emergence of artificial intelligence technology in recent years, deep learning has rapidly developed and been widely applied in various fields such as image and audio recognition, natural language processing, robotics, bioinformatics, chemistry, and finance. The monitoring of fish farming focuses on the quantity, growth, behavior, and health status of fish. Using deep learning technology, we can quickly and accurately obtain information related to fish farming and enhance its efficiency and management. This paper presents a deep learning-based method for fish farming monitoring and reviews the literature progress in fish length measurement, fish counting, fish feeding, fish swimming behavior, and fish disease diagnosis. Although deep learning-based fish length measurement has achieved high accuracy in underwater environments, some errors still exist. The counting methods based on deep learning can be categorized into segmentation counting, detection counting, tracking counting, and density regression counting. Deep learning models based on video data have higher accuracy in recognizing fish feeding behavior than image-based models. There have been many studies on fish tracking, but practical applications still face challenges such as fish feature extraction, the influence of fish size and obstructions, and occlusion issues. In fish disease diagnosis, it is necessary to establish standardized and shared fish disease datasets and utilize data fusion, data level information fusion, feature level information fusion, and decision level information fusion. This article also summarizes the main problems of deep learning-based visual technologies in fish farming monitoring from the aspects of monitoring data acquisition and transmission, dataset standardization and processing, deep learning model design, and the lack of business application in fish farming intelligent monitoring. The problems in data acquisition include a limited variety of experimental subjects, a small number of samples, and poor performance of experimental equipment. In the data transmission process, there are challenges in data security and real-time transmission. In terms of datasets, there is a low level of standardization and a lack of large-scale unified datasets. There is also a lack of research on large models and embedded models in deep learning model design. Furthermore, there is a realistic problem of insufficient business application in practical settings. The paper also proposes future research directions, including establishing fish farming monitoring datasets, super-scale parameter models for fish farming, edge computing for terminal monitoring devices, and digital twinning in fish farming monitoring, aiming to provide scientific references for the widespread application of deep learning in fish farming monitoring.
[1] |
FIORELLA K J, OKRONIPA H, BAKER K, et al. Contemporary aquaculture: implications for human nutrition[J]. Current Opinion in Biotechnology, 2021, 70: 83-90. doi: 10.1016/j.copbio.2020.11.014
|
[2] |
顾川川,张宇雷. 国内外工厂化养殖鱼池流态研究进展概述[J]. 渔业现代化,2013,40(6):10-14,29. doi: 10.3969/j.issn.1007-9580.2013.06.003
GU Chuanchuan, ZHANG Yulei. Overview of research on tank flow pattern in industrial aquaculture systems[J]. Fishery Modernization, 2013, 40(6): 10-14,29. (in Chinese with English abstract) doi: 10.3969/j.issn.1007-9580.2013.06.003
|
[3] |
黄小华,庞国良,袁太平,等. 我国深远海网箱养殖工程与装备技术研究综述[J]. 渔业科学进展,2022,43(6):121-131.
HUANG Xiaohua , PANG Guoliang, YUAN Taiping, et al. Review of engineering and equipment technologies for deep-sea cage aquaculture in china[J]. Progress in Fishery Sciences, 2022, 43(6): 121-131. (in Chinese with English abstract)
|
[4] |
宦娟,吴帆,曹伟建,等. 基于窄带物联网的养殖塘水质监测系统研制[J]. 农业工程学报,2019,35(8):252-261.
HUAN Juan, WU Fan, CAO Weijian, et al. Development of water quality monitoring system of aquaculture ponds based on narrow band internet of things[J]. Transactions of the Chinese Society of Agricultural Engineering(Transactions of the CSAE), 2019, 35(8): 252-261. (in Chinese with English abstract)
|
[5] |
ÁLVAREZ-ELLACURÍA A, PALMER M, CATALÁN I A, et al. Image-based, unsupervised estimation of fish size from commercial landings using deep learning[J]. ICES Journal of Marine Science, 2020, 77(4): 1330-1339. doi: 10.1093/icesjms/fsz216
|
[6] |
DITRIA E M, SIEVERS M, LOPEZ-MARCANO S, et al. Deep learning for automated analysis of fish abundance: the benefits of training across multiple habitats[J]. Environmental Monitoring and Assessment, 2020, 192: 1-8. doi: 10.1007/s10661-019-7904-3
|
[7] |
张文兵,解绶启,徐皓,等. 我国水产业高质量发展战略研究[J]. 中国工程科学,2023,25(4):137-148. doi: 10.15302/J-SSCAE-2023.04.006
ZHANG Wenbing, XIE Shouqi, XU Hao, et al. High-quality development strategy of fisheries in China[J]. Strategic Study of CAE, 2023, 25(4): 137-148. (in Chinese with English abstract) doi: 10.15302/J-SSCAE-2023.04.006
|
[8] |
AN D, HAO J, WEI Y, et al. Application of computer vision in fish intelligent feeding system: A review[J]. Aquaculture Research, 2021, 52(2): 423-437. doi: 10.1111/are.14907
|
[9] |
LI D, MIAO Z, PENG F, et al. Automatic counting methods in aquaculture: A review[J]. Journal of the World Aquaculture Society, 2021, 52(2): 269-283. doi: 10.1111/jwas.12745
|
[10] |
LI D, WANG G, DU L, et al. Recent advances in intelligent recognition methods for fish stress behavior[J]. Aquacultural Engineering, 2022, 96: 102222. doi: 10.1016/j.aquaeng.2021.102222
|
[11] |
ZHAO S, ZHANG S, LIU J, et al. Application of machine learning in intelligent fish aquaculture: A review[J]. Aquaculture, 2021, 540: 736724. doi: 10.1016/j.aquaculture.2021.736724
|
[12] |
LI D, DU L. Recent advances of deep learning algorithms for aquacultural machine vision systems with emphasis on fish[J]. Artificial Intelligence Review, 2022: 1-40.
|
[13] |
滕光辉,冀横溢,庄晏榕,等. 深度学习在猪只饲养过程的应用研究进展[J]. 农业工程学报,2022,38(14):235-249. doi: 10.11975/j.issn.1002-6819.2022.14.027
TENG Guanghui, JI Hengyi, ZHUANG Yanrong, et al. Research progress of deep learning in the process of pig feeding[J]. Transactions of the Chinese Society of Agricultural Engineering(Transactions of the CSAE), 2022, 38(14): 235-249. (in Chinese with English abstract) doi: 10.11975/j.issn.1002-6819.2022.14.027
|
[14] |
孙月莹,陈俊霖,张胜茂,等. 基于改进YOLOv7的毛虾捕捞渔船作业目标检测与计数方法[J]. 农业工程学报,2023,39(10):151-162. doi: 10.11975/j.issn.1002-6819.202303156
SUN Yueying, CHEN Junlin, ZHANG Shengmao, et al. Target detection and counting method for Acetes chinensis fishing vessels operation based on improved YOLOv7[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2023, 39(10): 151-162. (in Chinese with English abstract) doi: 10.11975/j.issn.1002-6819.202303156
|
[15] |
曾骏,王子威,于扬,等. 自然语言处理领域中的词嵌入方法综述[J]. 计算机科学与探索,2024,18(1):24-43.
ZENG Jun, WANG Ziwei, YU Yang, et al. Word embedding methods in natural language processing: A Review[J]. Journal of Frontiers of Computer Science and Technology, 2024, 18(1): 24-43. (in Chinese with English abstract)
|
[16] |
罗德虎,冉启武,杨超等. 语音情感识别研究综述[J]. 计算机工程与应用,2022,58(21):40-52. doi: 10.3778/j.issn.1002-8331.2206-0352
LUO Dehu, RAN Qiwu, YANG Chao, et al. Review on speech emotion recognition research[J]. Computer Engineering and Applications, 2022, 58(21): 40-52. (in Chinese with English abstract) doi: 10.3778/j.issn.1002-8331.2206-0352
|
[17] |
BARBEDO J G A. A review on the use of computer vision and artificial intelligence for fish recognition, monitoring, and management[J]. Fishes, 2022, 7(6): 335. doi: 10.3390/fishes7060335
|
[18] |
窦慧,张凌茗,韩峰,等. 卷积神经网络的可解释性研究综述[J]. 软件学报,2024(1):1-26
DOU Hui, ZHANG Ling-ming, HAN Feng, et al. Survey on convolutional neural network interpretability[J]. Journal of Software, 2024(1): 1-26. (in Chinese with English abstract)
|
[19] |
蔡卫明,庞海通,张一涛,等. 基于卷积神经网络的养殖鱼类品种识别模型[J]. 水产学报,2022,46(8):1369-1376.
CAI Weiming, PANG Haitong, ZHANG Yitao, et al. Recognition model of farmed fish species based on convolutional neural network[J]. Journal of Fisheries of China, 2022, 46(8): 1369-1376. (in Chinese with English abstract)
|
[20] |
贾宇霞,樊帅昌,易晓梅. 基于显著性增强和迁移学习的鱼类识别研究[J]. 渔业现代化,2020,47(1):38-46. doi: 10.3969/j.issn.1007-9580.2020.01.006
JIA Yuxia, FAN Shuaichang, YI Xiaomei. Fish recognition based on significant enhancement and transfer learning[J]. Fishery Modernization, 2020, 47(1): 38-46. (in Chinese with English abstract) doi: 10.3969/j.issn.1007-9580.2020.01.006
|
[21] |
GONG B, DAI K, SHAO J, et al. Fish-TViT: A novel fish species classification method in multi water areas based on transfer learning and vision transformer[J]. Heliyon, 2023, 9(6): e16761.
|
[22] |
张胜茂,刘洋,樊伟,等. 基于TensorFlow的水族馆鱼类目标检测APP开发[J]. 渔业现代化,2020,47(2):60-67. doi: 10.3969/j.issn.1007-9580.2020.02.008
ZHANG Shengmao, LIU Yang, FAN Wei, et al. Aquarium fish target detection APP development based on TensorFlow[J]. Fishery Modernization, 2020, 47(2): 60-67. (in Chinese with English abstract) doi: 10.3969/j.issn.1007-9580.2020.02.008
|
[23] |
MONKMAN G G, HYDER K, KAISER M J, et al. Using machine vision to estimate fish length from images using regional convolutional neural networks[J]. Methods in Ecology and Evolution, 2019, 10(12): 2045-2056. doi: 10.1111/2041-210X.13282
|
[24] |
张璐,黄琳,李备备,等. 基于多尺度融合与无锚点YOLO v3的鱼群计数方法[J]. 农业机械学报,2021,52(S1):237-244.
ZHANG Lu, HUANG Lin, LI Beibei, et al. Fish school counting method based on multi-scale fusion and no anchor YOLOv3[J]. Transactions of the Chinese Society for Agricultural Machinery, 2021, 52(S1): 237-244. (in Chinese with English abstract)
|
[25] |
赵海翔,崔鸿武,黄桢铭,等. 基于Bytetrack的多目标跟踪算法在斑马鱼毒性行为识别中的应用[J]. 渔业科学进展,2024,45(2):136-149.
ZHAO Haixiang, CUI Hongwu, HUANG Zhenming, et al. Application of a bytetrack-based, multi-target tracking algorithm for zebrafish toxicity-response behavior recognition[J]. Progress in Fishery Sciences, 2024, 45(2): 136-149. (in Chinese with English abstract)
|
[26] |
LI W, LI F, LI Z. CMFTNet: Multiple fish tracking based on counterpoised JointNet[J]. Computers and Electronics in Agriculture, 2022, 198: 107018. doi: 10.1016/j.compag.2022.107018
|
[27] |
WANG H, ZHANG S, ZHAO S, et al. Real-time detection and tracking of fish abnormal behavior based on improved YOLOV5 and SiamRPN++[J]. Computers and Electronics in Agriculture, 2022, 192: 106512. doi: 10.1016/j.compag.2021.106512
|
[28] |
郭奕,黄佳芯,邓博奇,等. 改进Mask R-CNN的真实环境下鱼体语义分割[J]. 农业工程学报,2022,38(23):162-169. doi: 10.11975/j.issn.1002-6819.2022.23.017
GUO Yi, HUANG Jiaxin, DENG Boqi, et al. Semantic segmentation of the fish bodies in real environment using improved Mask-RCNN model[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2022, 38(23): 162-169. (in Chinese with English abstract) doi: 10.11975/j.issn.1002-6819.2022.23.017
|
[29] |
王禹莎,王家迎,辛瑞,等. 基于计算机视觉的大黄鱼体尺、体重性状表型测量装置开发和应用[J]. 水产学报,2023,47(1):207-216.
WANG Yusha, WANG Jiaying, XIN Rui, et al. Application of computer vision in morphological and body weight measurements of large yellow croaker (Larimichthys crocea)[J]. Journal of Fisheries of China, 2023, 47(1): 207-216. (in Chinese with English abstract)
|
[30] |
YU X, WANG Y, LIU J, et al. Non-contact weight estimation system for fish based on instance segmentation[J]. Expert Systems with Applications, 2022, 210: 118403. doi: 10.1016/j.eswa.2022.118403
|
[31] |
YANG L, CHEN Y, SHEN T, et al. An fsfs-net method for occluded and aggregated fish segmentation from fish school feeding images[J]. Applied Sciences, 2023, 13(10): 6235. doi: 10.3390/app13106235
|
[32] |
李道亮,刘畅. 人工智能在鱼类养殖中研究应用分析与未来展望[J]. 智慧农业 (中英文),2020,2(3):1-20.
LI Daoliang, LIU Chang. Recent advances and future outlook for artificial intelligence in aquaculture[J]. Smart Agriculture, 2020, 2(3): 1-20. (in Chinese with English abstract)
|
[33] |
PAPADAKIS V M, PAPADAKIS I E, LAMPRIANIDOU F, et al. A computer-vision system and methodology for the analysis of fish behavior[J]. Aquacultural engineering, 2012, 46: 53-59. doi: 10.1016/j.aquaeng.2011.11.002
|
[34] |
KARPLUS I, GOTTDIENER M, ZION B. Guidance of single guppies (Poecilia reticulata) to allow sorting by computer vision[J]. Aquacultural engineering, 2003, 27(3): 177-190. doi: 10.1016/S0144-8609(02)00085-7
|
[35] |
段延娥,李道亮,李振波,等. 基于计算机视觉的水产动物视觉特征测量研究综述[J]. 农业工程学报,2015,31(15):1-11. doi: 10.11975/j.issn.1002-6819.2015.15.001
DUAN Yan’e, LI Daoliang, LI Zhenbo, et al. Review on visual characteristic measurement research of aquatic animals based on computer vision[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2015, 31(15): 1-11. (in Chinese with English abstract) doi: 10.11975/j.issn.1002-6819.2015.15.001
|
[36] |
PALMER M, ÁLVAREZ-ELLACURÍA A, MOLTÓ V, et al. Automatic, operational, high-resolution monitoring of fish length and catch numbers from landings using deep learning[J]. Fisheries Research, 2022, 246: 106166. doi: 10.1016/j.fishres.2021.106166
|
[37] |
TSENG C H, HSIEH C L, KUO Y F. Automatic measurement of the body length of harvested fish using convolutional neural networks[J]. Biosystems Engineering, 2020, 189: 36-47. doi: 10.1016/j.biosystemseng.2019.11.002
|
[38] |
CHUANG Y, XIANG F, ZHU H, et al. Segmentation and measurement scheme for fish morphological features based on Mask R-CNN[J]. Information Processing in Agriculture, 2020, 7: 523-534. doi: 10.1016/j.inpa.2020.01.002
|
[39] |
YU C, HU Z, HAN B, et al. Intelligent measurement of morphological characteristics of fish using improved U-Net[J]. Electronics, 2021, 10(12): 1426. doi: 10.3390/electronics10121426
|
[40] |
GARIA R, PRADOS R, QUINTANA J, et al. Automatic segmentation of fish using deep learning with application to fish size measurement[J]. ICES Journal of Marine Science, 2020, 77(4): 1354-1366. doi: 10.1093/icesjms/fsz186
|
[41] |
RICO-DÍAZ Á J, RABUÑAL J R, GESTAL M, et al. An application of fish detection based on eye search with artificial vision and artificial neural networks[J]. Water, 2020, 12(11): 3013. doi: 10.3390/w12113013
|
[42] |
李艳君,黄康为,项基. 基于立体视觉的动态鱼体尺寸测量[J]. 农业工程学报,2020,36(21):220-22. doi: 10.11975/j.issn.1002-6819.2020.21.026
LI Yanjun, HUANG Kangwei, XIANG Ji. Measurement of dynamic fish dimension based on stereoscopic vision[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2020, 36(21): 220-22. (in Chinese with English abstract) doi: 10.11975/j.issn.1002-6819.2020.21.026
|
[43] |
周佳龙,季柏民,倪伟强,等. 基于三维姿态拟合的非接触式红鳍东方鲀全长精准估算方法[J]. 农业工程学报,2023,39(4):154-161.
ZHOU Jialong, JI Baimin, NI Weiqiang, et al. Non-contact method for the accurate estimation of the full-length of Takifugu rubripes based on 3D pose fitting[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2023, 39(4): 154-161. (in Chinese with English abstract)
|
[44] |
UBINA N A, CHENG S C, CHANG C C, et al. Intelligent underwater stereo camera design for fish metric estimation using reliable object matching[J]. IEEE Access, 2022, 10: 74605-74619. doi: 10.1109/ACCESS.2022.3185753
|
[45] |
NEWBURY P F, CULVERHOUSE P F, PILGRIM D A. Automatic fish population counting by artificial neural network[J]. Aquaculture, 1995, 133(1): 45-55. doi: 10.1016/0044-8486(95)00003-K
|
[46] |
张涵钰,李振波,李蔚然,等. 基于机器视觉的水产养殖计数研究综述[J/OL]. 计算机应用,[2023-07-24]. http://kns.cnki.net/kcms/detail/51.1307.tp.20221129.2335.007.html
ZHANG Hanyu, LI Zhenbo, LI Weiran, et al. Review of research on aquaculture counting based on machine vision[J/OL]. Journal of Computer Applications, [2023-07-24]. http://kns.cnki.net/kcms/detail/51.1307.tp.20221129.2335.007.html. (in Chinese with English abstract)
|
[47] |
DITRIA E M, CONNOLLY R M, JINKS E L, et al. Annotated video footage for automated identification and counting of fish in unconstrained seagrass habitats[J]. Frontiers in Marine Science, 2021, 8: 629485. doi: 10.3389/fmars.2021.629485
|
[48] |
ZHAO S, ZHANG S, LU J, et al. A lightweight dead fish detection method based on deformable convolution and YOLOV4[J]. Computers and Electronics in Agriculture, 2022, 198: 107098. doi: 10.1016/j.compag.2022.107098
|
[49] |
CORO G, WALSH M B. An intelligent and cost-effective remote underwater video device for fish size monitoring[J]. Ecological Informatics, 2021, 63: 101311. doi: 10.1016/j.ecoinf.2021.101311
|
[50] |
TANAKA R, NAKANO T, OGAWA T. Sequential fish catch counter using vision-based fish detection and tracking[C]//OCEANS 2022-Chennai, IEEE, Chennai, India, 2022: 1-5.
|
[51] |
洪宇,叶瑞娟,冯国富. 一种基于改进DeepSORT的淡水环境下鱼类计数方法[J/OL]. 海洋渔业,[2023-07-17]. DOI: 10.13233/j. cnki. mar. fish. 20230703.001.
HONG Yu, YE Ruijuan, FENG Guofu. A fish counting method based on improved deepsort in freshwater environment[J/OL]. Marine Fisheries, [2023-07-17]. DOI: 10.13233/j.cnki.mar.fish.20230703.001. (in Chinese with English abstract)
|
[52] |
ZHOU Y, YU H, WU J, et al. Fish density estimation with multi-scale context enhanced convolutional neural network[J]. Journal of Communications and Information Networks, 2019, 4(3): 80-88. doi: 10.23919/JCIN.2019.8917888
|
[53] |
王金凤,胡凯,江帆,等. 基于改进深度学习模型的鱼群密度检测试验研究[J]. 渔业现代化,2021,48(2):77-82. doi: 10.3969/j.issn.1007-9580.2021.02.012
WANG Jinfeng, HU Kai, JIANG Fan, et al. Experimental research on fish density detection based on improved deep learning model[J]. Fishery Modernization, 2021, 48(2): 77-82. (in Chinese with English abstract) doi: 10.3969/j.issn.1007-9580.2021.02.012
|
[54] |
俞国燕,张宏亮,刘皞春,等. 水产养殖中鱼类投喂策略研究综述[J]. 渔业现代化,2020,47(1):1-6.
YU Guoyan, ZHANG Hongliang, LIU Haochun, et al. Research summary on fish feeding strategies in aquaculture[J]. Fishery Modernization, 2020, 47(1): 1-6. (in Chinese with English abstract)
|
[55] |
BARRAZA-GUARDADO R H, MARTÍNEZ-CÓRDOVA L R, ENRÍQUEZ-OCAÑA L F, et al. Effect of shrimp farm effluent on water and sediment quality parameters off the coast of Sonora, Mexico[J]. Ciencias Marinas, 2014, 40(4): 221-235.
|
[56] |
ZHOU C, XU D, CHEN L, et al. Evaluation of fish feeding intensity in aquaculture using a convolutional neural network and machine vision[J]. Aquaculture, 2019, 507: 457-465. doi: 10.1016/j.aquaculture.2019.04.056
|
[57] |
ZION B. The use of computer vision technologies in aquaculture:A review[J]. Computers and Electronics in Agriculture, 2012, 88: 125-132. doi: 10.1016/j.compag.2012.07.010
|
[58] |
朱明,张镇府,黄凰. 基于轻量级神经网络 MobileNetV3-Small 的鲈鱼摄食状态分类[J]. 农业工程学报,2021,37(19):165-172.
ZHU Ming, ZHANG Zhenfu, HUANG Huang, et al. Classification of perch ingesting condition using lightweight neural network MobileNetV3-Small[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2021, 37(19): 165-172. (in Chinese with English abstract)
|
[59] |
UBINA N, CHENG S C, CHANG C C, et al. Evaluating fish feeding intensity in aquaculture with convolutional neural networks[J]. Aquacultural Engineering, 2021, 94: 102178. doi: 10.1016/j.aquaeng.2021.102178
|
[60] |
IQBAL U, LI D, AKHTER M. Intelligent diagnosis of fish behavior using deep learning method[J]. Fishes, 2022, 7(4): 201. doi: 10.3390/fishes7040201
|
[61] |
冯双星,王丁弘,潘良,等. 基于轻量型 S3D 算法的鱼类摄食强度识别系统设计与试验[J]. 渔业现代化,2023,50(03):79-86. doi: 10.3969/j.issn.1007-9580.2023.03.010
FENG Shuangxing, WANG Dinghong, PAN Liang, et al. Implementation of fish feeding intensity identification sytem using light-weight S3D algorithm[J]. Fishery Modernization, 2023, 50(03): 79-86. (in Chinese with English abstract) doi: 10.3969/j.issn.1007-9580.2023.03.010
|
[62] |
MÅLØY H, AAMODT A, MISIMI E. A spatio-temporal recurrent network for salmon feeding action recognition from underwater videos in aquaculture[J]. Computers and Electronics in Agriculture, 2019, 167: 105087. doi: 10.1016/j.compag.2019.105087
|
[63] |
张佳林,徐立鸿,刘世晶. 基于水下机器视觉的大西洋鲑摄食行为分类[J]. 农业工程学报,2020,36(13):158-164.
ZHANG Jialin, XU Lihong, LIU Shijing. Classification of Atlantic salmon feeding behavior based on underwater machine vision[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2020, 36(13): 158-164. (in Chinese with English abstract)
|
[64] |
YANG L, YU H, CHENG Y, et al. A dual attention network based on efficientNet-B2 for short-term fish school feeding behavior analysis in aquaculture[J]. Computers and Electronics in Agriculture, 2021, 187: 106316. doi: 10.1016/j.compag.2021.106316
|
[65] |
ZHANG L, WANG J, LI B, et al. A MobileNetV2-SENet-based method for identifying fish school feeding behavior[J]. Aquacultural Engineering, 2022, 99: 102288. doi: 10.1016/j.aquaeng.2022.102288
|
[66] |
MALAMBUGI A, YU Z, ZHU W, et al. Effects of photoperiod on growth performance and melanogenesis pathway for skin pigmentation of Malaysian red tilapia[J]. Aquaculture Research, 2020, 51(5): 1824-1833. doi: 10.1111/are.14531
|
[67] |
SAARI G N, CORRALES J, HADDAD S P, et al. Influence of diltiazem on fathead minnows across dissolved oxygen gradients[J]. Environmental Toxicology and Chemistry, 2018, 37(11): 2835-2850. doi: 10.1002/etc.4242
|
[68] |
HONG J, CHEN X, LIU S, et al. Impact of fish density on water quality and physiological response of golden pompano (Trachinotus ovatus) flingerlings during transportation[J]. Aquaculture, 2019, 507: 260-265. doi: 10.1016/j.aquaculture.2019.04.040
|
[69] |
BREITBURG D L, PALMER M A, LOHER T. Larval distributions and the spatial patterns of settlement of an oyster reef fish: Responses to flow and structure[J]. Marine Ecology Progress Series, 1995, 125: 45-60. doi: 10.3354/meps125045
|
[70] |
SANTOS T G, SCHORER M, DOS SANTOS J C E, et al. The light intensity in growth, behavior and skin pigmentation of juvenile catfish Lophiosilurus alexandri (Steindachner)[J]. Latin American Journal of Aquatic Research, 2019, 47(3): 416-422. doi: 10.3856/vol47-issue3-fulltext-3
|
[71] |
LOPES A C C, VILLACORTA-CORREA M A, CARVALHO T B. Lower light intensity reduces larval aggression in matrinxã, Brycon amazonicus[J]. Behavioural Processes, 2018, 151: 62-66. doi: 10.1016/j.beproc.2018.01.017
|
[72] |
张胜茂,张衡,唐峰华,等. 计算机视觉技术在监测鱼类游泳行为中的研究进展[J]. 大连海洋大学学报,2017,32(4):493-500.
ZHANG Shengmao, ZHANG Heng, TANG Fenghua, et al. Research progress on fish swimming behavior monitoring by computer vision technology[J]. Journal of Dalian Ocean University2017, 32(4): 493-500. (in Chinese with English abstract)
|
[73] |
TELES L O, FERNANDES M, AMORIM J, et al. Video-tracking of zebrafish (Danio rerio) as a biological early warning system using two distinct artificial neural networks: Probabilistic neural network (PNN) and self-organizing map (SOM)[J]. Aquatic Toxicology, 2015, 165: 241-248. doi: 10.1016/j.aquatox.2015.06.008
|
[74] |
YANG M, REN B, QIAO L, et al. Behavior responses of zebrafish (Danio rerio) to aquatic environmental stresses in the characteristic of circadian rhythms[J]. Chemosphere, 2018, 210: 129-138. doi: 10.1016/j.chemosphere.2018.07.018
|
[75] |
ZHAO J, BAO W, ZHANG F, et al. Modified motion influence map and recurrent neural network-based monitoring of the local unusual behaviors for fish school in intensive aquaculture[J]. Aquaculture, 2018, 493: 165-175. doi: 10.1016/j.aquaculture.2018.04.064
|
[76] |
WANG G, MUHAMMAD A, LIU C, et al. Automatic recognition of fish behavior with a fusion of RGB and optical flow data based on deep learning[J]. Animals, 2021, 11(10): 2774. doi: 10.3390/ani11102774
|
[77] |
裴凯洋,张胜茂,樊伟,等. 基于计算机视觉的鱼类视频跟踪技术应用研究进展[J]. 海洋渔业,2022,44(5):640-647.
PEI Kaiyang, ZHANG Shengmao, FAN Wei, et al. Research progress of fish video tracking application based on computer vision[J]. Marine Fisheries, 2022, 44(5): 640-647. (in Chinese with English abstract)
|
[78] |
MEI Y, SUN B, LI D, et al. Recent advances of target tracking applications in aquaculture with emphasis on fish[J]. Computers and Electronics in Agriculture, 2022, 201: 107335. doi: 10.1016/j.compag.2022.107335
|
[79] |
BARREIROS M O, DANTAS D O, Silva L C O, et al. Zebrafish tracking using YOLOv2 and Kalman filter[J]. Scientific Reports, 2021, 11(1): 3219. doi: 10.1038/s41598-021-81997-9
|
[80] |
MATHIAS A, DHANALAKSHMI S, KUMAR R. Occlusion aware underwater object tracking using hybrid adaptive deep SORT-YOLOv3 approach[J]. Multimedia Tools and Applications, 2022, 81(30): 44109-44121. doi: 10.1007/s11042-022-13281-5
|
[81] |
LAI Y C, HUANG R J, KUO Y P, et al. Underwater target tracking via 3D convolutional networks[C]//2019 IEEE 6th International Conference on Industrial Engineering and Applications (ICIEA). IEEE, Tokyo, Japan, 2019: 485-490.
|
[82] |
ZHU Z, DUAN C, DONG C, et al. Epidemiological situation and phylogenetic relationship of Vibrio harveyi in marine-cultured fishes in China and Southeast Asia[J]. Aquaculture, 2020, 529: 735652. doi: 10.1016/j.aquaculture.2020.735652
|
[83] |
LAFFERTY K D, HARVELL C D, CONRAD J M, et al. Infectious diseases affect marine fisheries and aquaculture economics[J]. Annual Review of Marine Science, 2015, 7: 471-496. doi: 10.1146/annurev-marine-010814-015646
|
[84] |
WAGNER W P. Trends in expert system development: A longitudinal content analysis of over thirty years of expert system case studies[J]. Expert Systems With Applications, 2017, 76: 85-96. doi: 10.1016/j.eswa.2017.01.028
|
[85] |
PARK J S, OH M J, HAN S. Fish disease diagnosis system based on image processing of pathogens' microscopic images[C]//2007 Frontiers in the Convergence of Bioscience and Information Technologies. IEEE, Jeju, Korea (South), 2007: 878-883.
|
[86] |
GORGOGLIONE B, BAILEY C, FAST M D, et al. Co-infections and multiple stressors in fish[J]. Bulletin of the European Association of Fish Pathologists, 2020, 40(1): 4-19.
|
[87] |
LOPES J N S, GONÇALVES A N A, FUJIMOTO R Y, et al. Diagnosis of fish diseases using artificial neural networks[J]. International Journal of Computer Science Issues (IJCSI), 2011, 8(6): 68.
|
[88] |
KUMAR T, MALIK S, SAHOO A K. Fish disease detection using HOG and FAST feature descriptor[J]. International Journal of Computer Science and Information Security (IJCSIS), 2017, 15(5): 13065.
|
[89] |
XU J L, SUN D W. Computer vision detection of salmon muscle gaping using convolutional neural network features[J]. Food Analytical Methods, 2018, 11: 34-47. doi: 10.1007/s12161-017-0957-4
|
[90] |
孙龙清,王泊宁,王嘉煜,等. 基于G-RepVGG和鱼类运动行为的水质监测方法[J]. 农业机械学报,2022,53(S2):210-218.
SUN Longqing, WANG Boning, WANG Jiayu, et al. Water quality monitoring based on fish movement behavior and G-RepVGG[J]. Transactions of the Chinese Society for Agricultural Machinery, 2022, 53(S2): 210-218. (in Chinese with English abstract)
|
[91] |
MOHAMED E, ADL A. Diagnosis system for fish diseases trichodina and gyrodactylus under microscope based on decision tree and lda[C]//The 4th Student and Student Department Student Conference entitled" Student Innovation and Creativity" Bachelor and Baccalaureate Degrees in Egyptian, Arab and African Universities. Beni Suef, Egypt: Beni-Suef University, 2019: 110-119.
|
[92] |
张鹏,雷为民,赵新蕾,等. 跨摄像头多目标跟踪方法综述[J]. 计算机学报,2024,47(2):287-309.
ZHANG Peng, LEI Weimin, ZHAO Xinlei, et al. A Survey on multi-target multi-camera tracking methods[J]. Chinese Journal of Computers, 2024, 47(2): 287-309. (in Chinese with English abstract)
|
[93] |
张胜茂,孙永文,樊伟,等. 面向海洋渔业捕捞生产的深度学习方法应用研究进展[J]. 大连海洋大学学报,2022,37(4):683-695.
ZHANG Shengmao, SUN Yongwen, FAN Wei, et al. Research progress in the application of deep learning methods for marine fishery production: A review[J]. Journal of Dalian Ocean University, 2022, 37(4): 683-695. (in Chinese with English abstract)
|
[1] | LI Guangning, LIU Songtao, LIU Haitao, ZHENG Tiegang, SHI Kai, SUN Shuangke, LIU Jun. Design and effect evaluation of the fish guide weir based on fish migration behaviour[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2024, 40(7): 117-123. DOI: 10.11975/j.issn.1002-6819.202307206 |
[2] | Zhu Ming, Zhang Zhenfu, Huang Huang, Chen Hao, Cuan Xinwei, Dong Tao. Research progress on intelligent feeding methods in fish farming[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2022, 38(7): 38-47. DOI: 10.11975/j.issn.1002-6819.2022.07.005 |
[3] | Jin Yao, Wang Xiang, Tao Jiangping, Hu Wangbin. Fish passage efficiency and fish behavior analysis in the vertical slot fishway using the PIT telemetry technology[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2022, 38(4): 251-259. DOI: 10.11975/j.issn.1002-6819.2022.04.029 |
[4] | Chen Yuqi, Feng Dejun, Gui Fukun, Qu Xiaoyu. Discrimination of the feeding status of recirculating aquaculture fish via machine vision and reflective corrugated Fourier spectrum[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2021, 37(14): 155-162. DOI: 10.11975/j.issn.1002-6819.2021.14.017 |
[5] | Zhang Jun, Che Xuan, Jia Guangchen, Tian Changfeng, Chen Xiaolong. Effects of artificial dams on hydrodynamic characteristics of fish habitats in upper reaches of Yangtze River[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2021, 37(5): 140-146. DOI: 10.11975/j.issn.1002-6819.2021.05.016 |
[6] | Xu Maosen, Huang Bin, Mou Jiegang, Gu Yunqing, Zhou Peijian, Wu Denghao. Impact of primary flow rate on fish locomotion law in jet fish pump based on high speed photography[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2019, 35(17): 74-78. DOI: 10.11975/j.issn.1002-6819.2019.17.010 |
[7] | Zhu Guojun, Ji Longjuan, Feng Jianjun, Luo Xingqi. Probability evaluation of pressure and shear damage for fish passing through Francis turbine runner[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2019, 35(2): 55-62. DOI: 10.11975/j.issn.1002-6819.2019.02.008 |
[8] | Lu? Xiaowen, Hao Qian, Chen Yeyuan, Chen Huarui, Luo Haiyan, Fu Qin, Tai Jianxiang, Lv Feijie. Mango extractum additive promoting fish growth[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2013, 29(18): 277-283. DOI: 10.3969/j.issn.1002-6819.2013.18.033 |
[9] | Wang Guirong, Li Daoliang, Lü Zhaoqin, Duan Qingling, Wen Jiwen. Design and implementation of SMS-platform system for diagnosis of fish diseases[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2009, 25(3): 130-134. |
[10] | Yang Ping, Zhuang Chuanli, Fu Zetian, Li Daoliang. Design and implementation of Web-based teleconsultation system for fish disease diagnosis[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2006, 22(6): 127-130. |
1. |
林茜,江兴龙,周世豪. 基于SENet的工厂化循环水养殖鳗鲡(Anguilla)数量评估研究. 海洋与湖沼. 2025(01): 206-213 .
![]() | |
2. |
张鑫,于红,吴子健,程志澳,高陈成,杨宗轶,王悦. 基于FasterYOLOv9-Slim的轻量级工厂化养殖鱼群识别. 渔业现代化. 2025(01): 99-109 .
![]() | |
3. |
蒋雪松,计恺豪,姜洪喆,周宏平. 深度学习在林果品质无损检测中的研究进展. 农业工程学报. 2024(17): 1-16 .
![]() | |
4. |
镇帅,林远山,盛亦凡,洪胜呈,王文良,陈启俊,杨志庆,李智军. 基于双目视觉的海参体积测量方法. 农业工程学报. 2024(21): 165-174 .
![]() | |
5. |
魏巍宏,康伟达. 基于机器视觉的工厂化鱼类养殖投料控制系统研制. 唐山师范学院学报. 2024(06): 66-70 .
![]() | |
6. |
那日苏,翟立浩,邢海鹏,张泉. 基于改进YOLOv5网络的牧区牛粪检测方法. 农业工程学报. 2024(22): 145-153 .
![]() | |
7. |
祖志有. 水产养殖中鱼病的防控技术要点. 畜牧兽医科技信息. 2024(12): 227-229 .
![]() | |
8. |
汤永华,张志鹏,林森,刘兴通,荣弘扬,王腾川. 基于多标签补偿的改进YOLOv8鱼体病害检测方法. 农业工程学报. 2024(23): 227-234 .
![]() |