• EI
    • CSA
    • CABI
    • 卓越期刊
    • CA
    • Scopus
    • CSCD
    • 核心期刊
ZHANG Qianqian, XIE Zhen, LIN Xiaorui, et al. Spatiotemporal evolution and impact mechanisms of cropland conversion to forest or fruit production in southern mountainous regions[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2024, 40(4): 317-328. DOI: 10.11975/j.issn.1002-6819.202311170
Citation: ZHANG Qianqian, XIE Zhen, LIN Xiaorui, et al. Spatiotemporal evolution and impact mechanisms of cropland conversion to forest or fruit production in southern mountainous regions[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2024, 40(4): 317-328. DOI: 10.11975/j.issn.1002-6819.202311170

Spatiotemporal evolution and impact mechanisms of cropland conversion to forest or fruit production in southern mountainous regions

More Information
  • Received Date: November 22, 2023
  • Revised Date: February 05, 2024
  • Available Online: May 21, 2024
  • This research aims to elucidate the spatiotemporal evolution trends of cropland conversion to forest or fruit production in the southern mountainous regions, with a specific focus on Fujian Province, China. A comprehensive approach was adopted over the study spanning five-time points from 2000 to 2020. A raster dataset comprised the land-use data, natural environmental variables, locational conditions, and economic policy factors. Subsequently, the cropland conversion to forest or fruit production was identified through spatial overlay analysis. The optimal parameter was utilized to geographically weight the detector model. The terrain gradient classification and spatial autocorrelation analysis horizontally and vertically determined the spatiotemporal features of cropland "conversion to forest or fruit production". Furthermore, the indicators were selected from three dimensions – natural environment, locational conditions, and economic policies – to detect the key factors and interactive influences on the significant cropland conversion to forest or fruit production. The research findings indicated the following key results: 1) Cropland conversion to forest or fruit production exhibited an overall trend of "steady development followed by a sudden increase." The fourth time period witnessed a significant surge, with the converted area reaching 98 670.24 hectares. The primary regions of conversion were gradually shifted from east to west, with an increasing number of counties with conversion rates exceeding 1%. There was a reduction in the large-area patches, as the number of patches increased. 2) Horizontally, the degree of conversion shared the transition from "higher in the east, lower in the west" to "higher in the west, lower in the east." Moran's I increased from 0.396 to 0.672, indicating a clear spatial clustering of the conversion behavior. 3) Vertically, the cropland conversion to forest or fruit production exhibited a distinct topographical gradient, primarily occurring at elevations between 0 and 1 000 m, slopes of 0°-2° and 10°-20°, and terrain position indices ranging from 0.1 to 0.8, particularly in regions with the shaded and semi-shaded slopes. 4) Multiple factors were dominated in the cropland conversion to forest or fruit production. At the single-factor impact level, the economic policy demonstrated a higher explanatory power, compared with the natural and locational factors. The impact of each factor varied in the different periods, but the elevation, distance to residential areas, and GDP consistently emerged as the dominant factors with substantial explanatory power. At the multi-factor interaction level, there was mutual reinforcement among factors, with the more pronounced interactions between different types of factors within the same category. Notably, the interaction between locational factors and other elements exhibited a particularly significant enhancement. The cropland conversion to forest or fruit production complicatedly evolved from the combined influences of natural endowment, locational conditions, and economic policies. The differentiated management should be adopted in the control measures for the cropland conversion, according to the baseline conditions of cropland and the diverse driving mechanisms involved. Additionally, the cropland occupation and replenishment can be balanced to promote the spatial displacement between plain areas with forest or fruit production and hilly cropland. The research findings can offer valuable scientific insights for the coordinated development of cropland production and diversified agriculture in the southern mountainous regions.

  • [1]
    成升魁,李云云,刘晓洁,等. 关于新时代我国粮食安全观的思考[J]. 自然资源学报,2018,33(6):911-926. doi: 10.31497/zrzyxb.20170527

    CHENG Shengkui, LI Yunyun, LIU Xiaojie, et al. Thoughts on food security in China in the new period[J]. Journal of Natural Resources, 2018, 33(6): 911-926. (in Chinese with English abstract) doi: 10.31497/zrzyxb.20170527
    [2]
    SU Y, QIAN K, LIN L, et al. Identifying the driving forces of non-grain production expansion in rural China and its implications for policies on cultivated land protection[J]. Land Use Policy, 2020, 92: 104435. doi: 10.1016/j.landusepol.2019.104435
    [3]
    罗海平,桂俊练,张显未. 新中国成立以来党的粮食安全政策及时代启示[J]. 当代经济研究,2023(10):56-67.

    LUO Haiping, GUI Junlian, ZHANG Xianwei. The CPC’s grain security policies since the founding of new China and the enlightenment of the times[J]. Contemporary Economic Research, 2023(10): 56-67. (in Chinese with English abstract)
    [4]
    陈秧分,王介勇,张凤荣,等. 全球化与粮食安全新格局[J]. 自然资源学报,2021,36(6):1362-1380. doi: 10.31497/zrzyxb.20210602

    CHEN Yangfen, WANG Jieyong, ZHANG Fengrong, et al. New patterns of globalization and food security[J]. Journal of Natural Resources, 2021, 36(6): 1362-1380. (in Chinese with English abstract) doi: 10.31497/zrzyxb.20210602
    [5]
    张凤荣,张天柱,李超,等. 中国耕地[M]. 北京:中国农业大学出版社,2021.
    [6]
    邓金珊. 基于农户视角的粮食补贴政策绩效研究[D]. 广州:华南农业大学,2017.

    DENG jinshan. Research on the Performance of Grain Subsidy Policy from the Perspective of Farmers[D]. Guangzhou: College of Economics and Management, South China Agricultural University, 2017. (in Chinese with English abstract)
    [7]
    朱道林. 耕地“非粮化”的经济机制与治理路径[J]. 中国土地,2021(7):9-11.
    [8]
    匡远配,刘洋. 农地流转过程中的“非农化”“非粮化”辨析[J]. 农村经济,2018(4):1-6.
    [9]
    孟菲,谭永忠,陈航,等. 中国耕地“非粮化”的时空格局演变及其影响因素[J]. 中国土地科学,2022,36(1):97-106.

    MENG Fei, TAN Yongzhong, CHEN Hang, et al. Spatial-temporal evolution patterns and influencing factors of “Non-grain” utilization of cultivated land in China[J]. China Land Science, 2022, 36(1): 97-106. (in Chinese with English abstract)
    [10]
    吴大放,吴钊骏,李升发,等. 粤北山区耕地非粮化演变特征及其影响因素[J]. 经济地理,2023,43(8):144-153.

    WU Dafang, WU Zhaojun, LI Shengfa, et al. Spatiotemporal evolution and influencing factors of non-grain cultivated land in northern mountainous areas of Guangdong province[J]. Economic Geography, 2023, 43(8): 144-153. (in Chinese with English abstract)
    [11]
    谢花林,欧阳振益,陈倩茹. 耕地细碎化促进了耕地“非粮化”吗——基于福建丘陵山区农户的微观调查[J]. 中国土地科学,2022,36(1):47-56.

    XIE Hualin, OUYANG Zhenyi, CHEN Qianru. Does cultivated land fragmentation promote “Non-grain” utilization of cultivated land: Based on a micro survey of farmers in the hilly and mountainous areas of Fujian[J]. China Land Science, 2022, 36(1): 47-56. (in Chinese with English abstract)
    [12]
    程旭东,陈美球,赖昭豪,等. 山区县耕地“非粮化”空间分异规律及关联因素[J]. 农业工程学报,2023,39(2):203-211.

    CHENG Xudong. CHEN Meiqiu, LAI Zhaohao, et al. Spatial differentiation pattern and correlation factors of “non-grain” cultivated land in mountainous counties[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2023, 39(2): 203-211. (in Chinese with English abstract)
    [13]
    常媛媛,刘俊娜,马静,等. 干旱半干旱区耕地非粮化空间格局及驱动因素[J]. 农业资源与环境学报,2023,40(2):333-344.

    CHANG Yuanyuan, LIU Junna, MA Jing, et al. Spatial pattern and driving factors of non-grain conversion on cultivated land in arid and semi-arid regions[J]. Journal of Agricultural Resources and Environment, 2023, 40(2): 333-344. (in Chinese with English abstract)
    [14]
    杨绪红,金晓斌,贾培宏,等. 近20年海南省耕地林果化的时空分异及驱动因素分析[J]. 农业工程学报. 2022,38(5):233-240.

    YANG Xuhong, JIN Xiaobin, JIA Peihong, et al. Spatial-temporal variation and driving factors of cropland conversion to forest or fruit production in Hainan Province during 2000-2020[J]. Transactions of the Chinese Society of Agricultural Engineering(Transactions of the CSAE), 2022, 38(5): 233-240. (in Chinese with English abstract)
    [15]
    梁鑫源,李阳兵. 三峡库区“耕-果”转换时空变化特征及其启示:以草堂溪流域为例[J]. 自然资源学报,2019,34(2):385-399. doi: 10.31497/zrzyxb.20190214

    LIANG Xinyuan, LI Yangbing. Spatio-temporal variation of farmland-fruit forest conversion and its enlightenment in Three Gorges Reservoir area: A case study on Caotangxi watershe[J]. Journal of Natural Resources, 2019, 34(2): 385-399. (in Chinese with English abstract) doi: 10.31497/zrzyxb.20190214
    [16]
    吕沄灏,崔民,夏显力,等. 陕南耕地“非粮化”时空演变及其驱动力[J]. 资源科学,2023,45(8):1531-1545.

    LV Yunhao, CUI Min, XIA Xianli, et al. The spatiotemporal evolution of non-grain conversion of cultivated land in southern Shaanxi Province and its driving factors[J]. Resources Science, 2023, 45(8): 1531-1545. (in Chinese with English abstract)
    [17]
    臧玉珠,刘彦随,杨园园. 山区县域土地利用格局变化及其地形梯度效应——以井冈山市为例[J]. 自然资源学报,2019,34(7):1391-1404. doi: 10.31497/zrzyxb.20190704

    ZANG Yuzhu, LIU Yansui, YANG Yuanyuan. Land use pattern change and its topographic gradient effect in the mountainous areas: A case study of Jinggangshan city[J]. Journal of Natural Resources, 2019, 34(7): 1391-1404. (in Chinese with English abstract) doi: 10.31497/zrzyxb.20190704
    [18]
    谢臻,张凤荣,高阳,等. 基于遥感和GIS 的平原和山区贫困县农村耕地利用演变对比[J]. 农业工程学报,2018,34(15):255-263.

    XIE Zhen, ZHANG Fengrong, GAO Yang, et al. Comparison on evolution of rural farmland use in poverty-stricken counties between flat and mountainous areas based on remote sensing and GIS[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2018, 34(15): 255-263. (in Chinese with English abstract)
    [19]
    谢雨琦,王子芳,王颖,等. 重庆丘陵山区耕地非粮化时空变异及驱动类型划分[J]. 农业资源与环境学报,2024,41(1):15-26.

    XIE Yuqi, WANG Zifang, WANG Ying, et al. Spatial-temporal variation and driving types of non-grain cultivated land in hilly and mountainous areas of Chongqing[J]. Journal of Agricultural Resources and Environment, 2024, 41(1): 15-26. (in Chinese with English abstract)
    [20]
    吴郁玲,张佩,于亿亿,等. 粮食安全视角下中国耕地“非粮化”研究进展与展望[J]. 中国土地科学,2021,35(9):116-124.

    WU Yuling, ZHANG Pei, YU Yiyi, et al. Progress review on and prospects for non-grain cultivated land in China from the perspective of food security[J]. China Land Science, 2021, 35(9): 116-124. (in Chinese with English abstract)
    [21]
    黄玛兰,李晓云. 农业劳动力价格上涨对农作物种植结构变化的省际差异性影响[J]. 经济地理,2019,39(6):172-182.

    HUANG Malan, LI Xiaoyun. The impacts of rural labor price rising on crop structure among provinces[J]. Economic Geography, 2019, 39(6): 172-182. (in Chinese with English abstract)
    [22]
    QIU T, BORIS C, LI S, et al. Does land renting-in reduce grain production? Evidence from rural China[J]. Land Use Policy, 2020, 90: 104311.
    [23]
    张颖诗,冯艳芬,王芳,等. 广东省耕地非粮化的时空分异及其驱动机制[J]. 资源科学,2022,44(3):480-493.

    ZHANG Yingshi, FENG Yanfen, WANG Fang, et al. Spatiotemporal differentiation and driving mechanism of cultivated land non- grain conversion in Guangdong Province[J]. Resources Science, 2022, 44(3): 480-493. (in Chinese with English abstract)
    [24]
    王劲峰,徐成东. 地理探测器:原理与展望[J]. 地理学报,2017,72(1):116-134.

    WANG Jinfeng, XU Chengdong. Geodetector: Principle and prospective[J]. Acta Geographica Sinica, 2017, 72(1): 116-134. (in Chinese with English abstract)
    [25]
    SONG Y, WANG J, GE Y, et al. An optimal parameters-based geographical detector model enhances geographic characteristics of explanatory variables for spatial heterogeneity analysis: Cases with different types of spatial data[J]. GIScience & Remote Sensing, 2020, 57(5): 593-610.
    [26]
    李辉丹,史东梅,夏蕊,等. 基于地理探测器的重庆坡耕地时空格局演变特征及驱动机制[J]. 农业工程学报,2022,38(12):280-290.

    LI Huidan, SHI Dongmei, XIA Rui, et al. Evolution characteristics and driving mechanism for the spatiotemporal pattern of sloping farmland in Chongqing based on geodetector[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2022, 38(12): 280-290. (in Chinese with English abstract)
    [27]
    牛志君,赵建利,王晓晴,等. 基于地形梯度的冀西北山地丘陵区土地利用格局变化分析——以河北省怀来县为例[J]. 水土保持研究,2017,24(4):95-102.

    NIU Zhijun, ZHAO Jianli, WANG Xiaoqing, et al. Analysis of land use patterns and temporal changes in hilly region of northwest Hebei based on terrain gradient: A case study of Huailai county in Hebei provonce[J]. Research of Soil and Water Conservation, 2017, 24(4): 95-102. (in Chinese with English abstract)
    [28]
    LIU H, MENG C, WANG Y, et al. From landscape perspective to determine joint effect of land use, soil, and topography on seasonal stream water quality in subtropical agricultural catchments[J]. Sci. Total Environ. 2021, 783: 147047.
    [29]
    张惠中,宋文,张文信,等. 山东省耕地“非粮化”空间分异特征及其影响因素分析[J]. 中国土地科学,2021,35(10):94-103.

    ZHANG Huizhong, SONG Wen, ZHANG Wenxin, et al. Analysis of spatial differentiation characteristics and influencing factors of non-grain cultivated land in Shandong province[J]. China Land Science, 2021, 35(10): 94-103. (in Chinese with English abstract)
    [30]
    刘霞,郭澍,王琳. 区域一体化地区的土地利用与生态服务价值研究:以双莱先行区为例[J]. 生态环境学报,2023,32(6):1163-1172.

    LIU Xia, GUO Shu, WANG Lin. Study on the value of land use and ecological services in the region of regional integration: Take shuanglai pilot area as an example[J]. Ecology and Environmental Sciences, 2023, 32(6): 1163-1172. (in Chinese with English abstract)
    [31]
    刘纪远,宁佳,匡文慧,等. 2010-2015年中国土地利用变化的时空格局与新特征[J]. 地理学报,2018,73(5):789-802.

    LIU Jiyuan , NING Jia , KUANG Wenhui, et al. Spatio-temporal patterns and characteristics of land-use change in China during 2010- 2015[J]. Acta Geographica Sinica, 2018, 73(5): 789-802. (in Chinese with English abstract)
    [32]
    张佰林,高江波,高阳,等. 中国山区农村土地利用转型解析[J]. 地理学报,2018,73(3):503-517.

    ZHANG Bailin, GAO Jiangbo, GAO Yang, et al. Land use transition of mountainous rural areas in China[J]. Acta Geographica Sinica, 2018, 73(3): 503-517. (in Chinese with English abstract)
    [33]
    刘超,霍永伟,许月卿,等. 生态退耕前后张家口市耕地变化及影响因素识别[J]. 自然资源学报,2018,33(10):1806-1820. doi: 10.31497/zrzyxb.20170965

    LIU Chao, HUO Yongwei, XU Yueqing, et al. Changes in cultivated land and influencing factors before and after the implementation of grain for green project in Zhangjiakou City[J]. Journal of Natural Resources, 2018, 33(10): 1806-1820. (in Chinese with English abstract) doi: 10.31497/zrzyxb.20170965
    [34]
    杨子生,韩华丽,朱玉碧,等. 退耕还林工程驱动下的土地利用变化合理性研究:以云南芒市为例[J]. 自然资源学报,2011,26(5):733-745.

    YANG Zisheng, HAN Huali, ZHU Yubi, et al. The rationality evaluation of land use changes in the middle and low mountain basin and valley area of southwest Yunnan Province driven by the national project of converting farm land to forest: a case study in Luxi city[J]. Journal of Natural Resources, 2011, 26(5): 733-745. (in Chinese with English abstract)
    [35]
    孔祥斌. 耕地“非粮化”问题、成因及对策[J]. 中国土地,2020(11):17-19.
    [36]
    严如贺,柯水发. 经济林种植对人工林木材供给能力的影响:抑制还是促进?:基于南方12省份森林资源清查面板数据[J]. 中国农村经济,2019(5):38-53.

    YAN Ruhe, KE Shuifa. The impact of cultivation of tree crops on timber supply capacity of planted forests: inhibition or promotion? An analysis based on forest inventory panel data in 12 provinces of south China[J]. Chinese Rural Economy. 2019(5): 38-53. (in Chinese with English abstract)
    [37]
    裴东鑫,张冬平. 土地流转背景下促进河南粮食稳产的思考[J]. 宏观经济管理,2015(6):70-73.
    [38]
    孙晓兵,孔祥斌,温良友. 基于耕地要素的耕地质量评价指标体系研究及其发展趋势[J]. 土壤通报,2019,50(3):739-747.

    SUN Xiaobing, KONG Xiangbin, WEN Liangyou. Evaluation index system of cultivated land quality and its development trend based on cultivated land elements[J]. Chinese Journal of Soil Science. 2019, 50(3): 739-747. (in Chinese with English abstract)
  • Related Articles

    [1]CHEN Yuan, QIAO Weifeng, LI Chen, GUO Wenxu, TANG Juan. Evolution and mechanism analysis of rural regional multi-function pattern in Jiangsu Province from the perspective of economic gradient[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2025, 41(4): 288-298. DOI: 10.11975/j.issn.1002-6819.202407101
    [2]LUO Shasha, LAI Qingbiao, WANG Xudong, WANG Yongping, ZHAO Yifu. Control and management of cropland regionalization in Fujian Province of China using multi-functional evaluation and trade-off/synergy relationships[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2023, 39(13): 271-280. DOI: 10.11975/j.issn.1002-6819.202302160
    [3]Ye Yanmei, Wu Cifang, Yu Jing. Ecological design of irrigation and drainage ditches in agricultural land consolidation[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2011, 27(10): 148-153.
    [4]Qiu Bingwen. Analysis of multi-scale spatial distribution characteristics of cultivated land in Fujian Province[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2008, 24(11): 63-68.
    [5]Wang Hui, Dong Yuanhua, Zhang Xumei, Li Decheng, An Qiong. Salinity contents and distribution of dry animal manures on intensified-farms in Jiangsu Province[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2007, 23(11): 229-233.
    [6]Wang Hongmei, Wang Xiaoyu, Li Hong. Land utilization situation in Heilongjiang Province based on quantitative geography model[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2006, 22(7): 70-74.
    [7]Yu Leng, Yang Minghai, Dai Youzhong, Sun Licheng. Effects of Water Resource Utilization in Jilin Province[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 1998, 14(3): 102-106.
    [8]Fang Wen-xi, Zhang Xing-xiong, Zhu Heng-yin. The Situation and Development of Mechanization of Agriculture in Fujian Province[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 1997, 13(3): 16-20.
    [9]Huang Deyu, Yu Zhongying. Developing Export-oriented Fisheries by Relying on Science and Technology[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 1992, 8(2): 63-67.
    [10]Lian Yuqing. THE SOIL EROSION AND ITS CONTROL STRATEGY IN FUJIAN PROVINCE[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 1987, 3(4): 43-50.
  • Cited by

    Periodical cited type(7)

    1. 梁通,张璐,曹倡景,张攀,杨文杰,韩珈琦. 黄河砒砂岩区2000—2023年土地利用变化的地形梯度效应. 水土保持通报. 2025(01): 327-336 .
    2. 张运平,林建平,黄艺敏,袁浩,冯桂贤,张佩怡. 基于空间决策模型的耕-果错位空间分析与协调布局优化. 农业工程学报. 2024(06): 330-338 . 本站查看
    3. 叶阳,邱世藩. 赣南山区耕地林果化时空演变及驱动力研究. 农业与技术. 2024(18): 165-169 .
    4. 王欣,马凤才. 耕地非粮化研究综述. 合作经济与科技. 2024(23): 27-29 .
    5. 谢臻,孔祥斌,张建阳,赵晶. 大食物观下的南方山区耕地“非粮化”适应性恢复策略. 中国土地. 2024(10): 40-43 .
    6. 魏鹏,余敦,胡海洋,雷凯星. 立体空间视角下景观生态风险时空演化及影响因素分析. 农业工程学报. 2024(19): 250-261 . 本站查看
    7. 李武艳,何春榕,朱从谋,陈成,陈思竹,陈莎,徐保根. 经济发达区耕地非粮化景观格局特征及分区整治研究——以宁波市鄞州区为例. 中国土地科学. 2024(09): 100-108 .

    Other cited types(4)

Catalog

    Article views (160) PDF downloads (77) Cited by(11)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return